Metasurfaces provide a potent platform for the dynamic manipulation of electromagnetic waves.Coupled with phase-change materials,they facilitate the creation of versatile metadevices,showcasing various tunable functio...Metasurfaces provide a potent platform for the dynamic manipulation of electromagnetic waves.Coupled with phase-change materials,they facilitate the creation of versatile metadevices,showcasing various tunable functions based on the transition between amorphous and crystalline states.However,the inherent limitation in tunable states imposes constraints on the multiplexing channels of metadevices.Here,this paper introduces a novel approach-a multi-functional metadevice achieved through the two-level control of the encoding phasechange metaatoms.Utilizing the phase-change material Ge_(2)Sb_(2)Se_(4)Te1(GSST)and high refractive-index liquid diiodomethane(CH_(2)I_(2)),this paper showcases precise control over electromagnetic wave manipulation.The GSST state governs the tunable function,switching it ON and OFF,while the presence of liquid in the hole dictates the deflection angle when the tunable function is active.Importantly,our tunable coding metasurface exhibits robust performance across a broad wavelength spectrum.The incorporation of high refractive-index liquid extends the regulatory dimension of the metadevice,enabling dynamic switching of encoding bit levels.This two-level tunable metadevice,rooted in phase-change materials,presents a promising avenue for the dynamic control of functions.展开更多
A kind of phase change material(PCM)-based nanocomposite was prepared and added into high energy propellants containing RDX as additives to investigate its effect on thermal decomposition and burning characteristic of...A kind of phase change material(PCM)-based nanocomposite was prepared and added into high energy propellants containing RDX as additives to investigate its effect on thermal decomposition and burning characteristic of high energy propellants.The effect of PCM-based nanocomposites on thermal decomposition of high energy propellants is investigated by TG/DSC-FTIR-MS technology.Due to the delayed protection effect(PCM-based nanocomposites can absorb lots of heat at the range of certain temperature when it undergoes structure change or phase transitions)of PCM-based nanocomposites under the thermal decomposition condition,the thermal stability of high energy propellants modified with PCMbased nanocomposites is improved.At the same time,the concentration of N2,NO2,H2O and CO_(2)is increased during thermal decomposition of high energy propellants whereas NO and CO is decreased.The burning gaseous products and burning characteristic of high energy propellants are studied by the combination of closed bomb test and Fourier transform infrared spectrum.The main burning gaseous products are N2,CO_(2),CO,H2O,CH4,etc.After the high energy propellant modified with PCM-based nanocomposites,the concentration of CH4is increased while CO,CO_(2) and H2O is decreased under the high-pressure burning condition.The progressivity factor of high energy propellants is increased by22.2%compared with the control sample while the maximum pressure is merely decreased 1.25%after the addition of the PCM-based nanocomposite,thus PCM-based nanocomposites can be used to adjust the burning process and improve the burning progressivity of high energy propellants.This study is expected to boost the practical application of PCM-based nanocomposite to the propellant formulation and effectively control the burning characteristic of high energy propellants.展开更多
Phase change material(PCM)can reduce the indoor temperature fluctuation and humidity control material can adjust relative humidity used in buildings.In this study,a kind of composite phase change material particles(CP...Phase change material(PCM)can reduce the indoor temperature fluctuation and humidity control material can adjust relative humidity used in buildings.In this study,a kind of composite phase change material particles(CPCMPs)were prepared by vacuum impregnation method with expanded perlite(EP)as supporting material and paraffin as phase change material.Thus,a PCM plate was fabricated by mould pressing method with CPCMPs and then composite phase change humidity control wallboard(CPCHCW)was prepared by spraying the diatom mud on the surface of PCM plate.The composition,thermophysical properties and microstructure were characterized using X-ray diffraction instrument(XRD),differential scanning calorimeter(DSC)and scanning electron microscope(SEM).Additionally,the hygrothermal performance of CPCHCW was characterized by temperature and humidity collaborative test.The results can be summarized as follows:(1)CPCMPs have suitable phase change parameters with melting/freezing point of 18.23°C/29.42°C and higher latent heat of 54.66 J/g/55.63 J/g;(2)the diatom mud can control the humidity of confined space with a certain volume;(3)the combination of diatom mud and PCM plate in CPCHCW can effectively adjust the indoor temperature and humidity.The above conclusions indicate the potential of CPCHCW in the application of building energy efficiency.展开更多
A binary eutectic mixture composed of tetradecanol(TD)and myristic acid(MA)was maximally absorbed into the microstructures of expanded perlite(EP)and expanded vermiculite(EVMT),respectively,through a self-made vacuum ...A binary eutectic mixture composed of tetradecanol(TD)and myristic acid(MA)was maximally absorbed into the microstructures of expanded perlite(EP)and expanded vermiculite(EVMT),respectively,through a self-made vacuum adsorption roller to prepare phase change material(PCM)particle(PCP).Then EP and EVMT-based composite PCM plates were respectively fabricated through a mold pressing method.The thermal property,chemical stability,microstructure and durability were characterized by differential scanning calorimeter(DSC),Fourier transform infrared spectroscope(FT-IR),scanning electron microscope(SEM)and thermal cycling tests,respectively.The results show that both PCPs have high latent heats with 110 J/g for EP-based PCP and more than 130 J/g for EVMT-based PCP,compact microstructure without PCM leakage,stable chemical property and good durability.The research results have proved the feasibility for the vacuum adsorption roller used in the composite PCM fabrication.Results of thermal storage performance experiment indicate that the fabricated PCM plates have better thermal inertia than common building materials,and the thermal storage performance of PCM plates has nonlinearly changed with outside air velocity and temperature increase.Therefore,PCM plates show a significant potential for the practical application of building thermal storage.展开更多
In the present work,paraffin phase change material is used as quenchant for the heat treatment of 42CrMo4 alloy and compared with water,air,and CuO doped paraffin.The samples were prepared based on ASTM E 8M-98 standa...In the present work,paraffin phase change material is used as quenchant for the heat treatment of 42CrMo4 alloy and compared with water,air,and CuO doped paraffin.The samples were prepared based on ASTM E 8M-98 standard for tensile test and then heated up to 830°C,kept for 4 h in an electric resistance furnace and then quenched in the mentioned media.Elastic modulus,yield strength,ultimate tensile strength,elongation,and modulus of toughness were determined according to the obtained stress?strain curves.Moreover,the hardness and microstructural evolution were investigated after the heat treatment at different media.The samples quenched in paraffin and CuO-doped paraffin are higher in ultimate tensile strength(1439 and 1306 MPa,respectively)than those quenched in water(1190 MPa)and air(1010 MPa).The highest hardness,with a value of HV 552,belonged to the sample quenched in CuO-doped paraffin.The microstructural studies revealed that the non-tempered steel had a ferrite/pearlite microstructure,while by quenching in water,paraffin and CuO-doped paraffin,ferrite/martensite microstructures were achieved.It is also observed that using the air as quenchant resulted in a three-phase bainite/martensite/ferrite microstructure.展开更多
In the present work,effects of various heat transfer fluids on the discharging performance of a phase change material(PCM) included cylindrical container are numerically assessed during forced convection.The heat tran...In the present work,effects of various heat transfer fluids on the discharging performance of a phase change material(PCM) included cylindrical container are numerically assessed during forced convection.The heat transfer fluid air,hydrogen,water and nanofluid with alumina particles are used and the the geometric variation of the PCM embedded region is also considered.The finite element method is used as the solver.Dynamic features of heat exchange with various phases are explored for different heat transfer fluid types,Reynolds number(between 100 and 300) and PCM embedded region geometric variation(h_(x)between 0.01 d_(1) and 0.65 d_(1),hybetween 0.1 h_(1) and 0.4 h_(1)).It is observed that discharging time is significantly influenced by the heat transfer fluid type while full phase transition time for air is obtained as more than 10 times when hydrogen is utilized as heat transfer fluid.The best performance is achieved with nanofluid.When the PCM integrated region size is reduced,discharging time is generally reduced while due to the form of the geometry,vortex formation is established in the PCM region.This results in performance degeneration at the highest radius and height of the inner cylinder.Discharging time increases by about 12% when radius of the inner cylinder is increased from h_(x)=0.35 d_(1) to h_(x)=0.45 d_(1).Dynamic features of PCM temperature and liquid fraction are affected with Reynolds number while discharging time is reduced by about 48% when configurations with the lowest and highest Reynolds number are compared.展开更多
Antarcticite, a mineral with composition CaCl2·6H2O and structure P321, is an ideal phase change material (PCM) due to the high energy storage density and good thermal conductivity. However, the existence of supe...Antarcticite, a mineral with composition CaCl2·6H2O and structure P321, is an ideal phase change material (PCM) due to the high energy storage density and good thermal conductivity. However, the existence of supercooling and incongruent melting would weaken its thermal properties and then hinder its application. In this paper, based on the cooling curve method and DSC measurement, we experimentally selected the minor SrCl2·6H2O as the nucleator and carboxyl methyl cellulose as the thickening agent, which could significantly reduce supercooling and partly restrain the incongruent melting. Moreover, we incorporated Antarcticite as PCM into building envelopes in four different cases, the simulation of the heat transfer processes showed that the temperature fluctuation could be reduced to about 2℃ in the best case.展开更多
Paraffin/γ-Al2O3 composites as phase change energy storage materials were prepared by absorbing paraffin in porous network of γ-Al2O3.In the composite materials,paraffin was used as a phase change material(PCM)for t...Paraffin/γ-Al2O3 composites as phase change energy storage materials were prepared by absorbing paraffin in porous network of γ-Al2O3.In the composite materials,paraffin was used as a phase change material(PCM)for thermal energy storage,and γ-Al2O3 acted as supporting materials.Characterizations were conducted to evaluate the energy storage performance of the composites,and differential scanning calorimeter results showed that the PCM-3 composite has melting latent heat of 112.9 kJ/kg with a melting temperature of 62.9 ℃.Due to strong capillary force and surface tension between paraffin and γ-Al2O3,the leakage of melted paraffin from the composites can be effectively prevented.Therefore,the paraffin/γ-Al2O3 composites have a good thermal stability and can be used repeatedly.展开更多
The conventional solar heating floor system contains a big water tank to store energy in the day time for heating at night,which takes much building space and is very heavy.In order to reduce the water tank volume eve...The conventional solar heating floor system contains a big water tank to store energy in the day time for heating at night,which takes much building space and is very heavy.In order to reduce the water tank volume even to cancel the tank,a novel structure of integrated water pipe floor heating system using shape-stabilized phase change materials(SSPCM)for thermal energy storage was developed.A numerical model was developed to analyze the performance of SSPCM floor heating system under the intermittent heating condition,which was verified by our experimental data.The thermal performance of the heating system and the effects of various factors on it were analyzed numerically.The factors including phase transition temperature,heat of fusion,thermal conductivity of SSPCM and thermal conductivity of the decoration material were analyzed.The results show that tm and kd are the most import influencing factors on the thermal performance of SSPCM floor heating system,since they determine the heat source temperature and thermal resistance between SSPCM plates and indoor air,respectively.Hm should be large to store enough thermal energy in the day time for nighttimes heating.The effects of kp can be ignored in this system.The SSPCM floor heating system has potential of making use of the daytime solar energy for heating at night efficiently in various climates when its structure is properly designed.展开更多
The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano...The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano technology provides an opportunity for an appreciable enhancement in the thermal conductivity of the phase change materials.In order to explore the possibilities of using nano technology for various applications,a detailed parametric study is carried out,to analyse the heat transfer enhancement potential with the thermal conductivity of the conventional phase change materials and nano enhanced phase change materials under various flow conditions of the heat transfer fluid.Initially,the theoretical equation,used to determine the time for outward cylindrical solidification of the phase change material,is validated with the experimental results.It is inferred from the parametric studies,that for paraffinic phase change materials with air as the heat transfer fluid,the first step should be to increase the heat transfer coefficient to the maximum extent,before making any attempt to increase the thermal conductivity of the phase change materials,with the addition of nano particles.When water is used as the phase change material,the addition of nano particles is recommended to achieve better heat transfer,when a liquid is used as the heat transfer fluid.展开更多
Based on the phase change material (PCM) thermal characteristic,some testing methods such as differential scanning calorimeter (DSC) etc were used to select the low melting mixture of capric and lauric acid as PCM of ...Based on the phase change material (PCM) thermal characteristic,some testing methods such as differential scanning calorimeter (DSC) etc were used to select the low melting mixture of capric and lauric acid as PCM of phase change wallboard (PCW). The PCW room was established,and some contrast analysis of the storage and exchange thermal characteristic of PCW room and ordinary wall room were made under different conditions. The results show that the fluctuation of indoor air temperature in PCW room is smaller than that in ordinary room obviously. The exchange energy of PCM room with outdoor is less than that of ordinary wall room. In the winter condition,PCW room utilizes valley period electricity to storage energy in the night,while releases at peak period electricity in daytime,which can divert 40% of peak load. In the summer condition,PCW room can reduce the peak cooling load by 25% compared with ordinary wall room.展开更多
基金Supported by the Strategic Priority Research Program(B)of Chinese Academy of Sciences(XDB0580000,XDB43010200)National Natural Science Foundation of China(62222514,62350073,U2341226,61991440)+6 种基金National Key Research and Development Program of China(2023YFA1406900)Shanghai Science and Technology Committee(23ZR1482000,22JC1402900,22ZR1472700)Natural Science Foundation of Zhejiang Province(LR22F050004)Shanghai Municipal Science and Technology Major Project(2019SHZDZX01)Youth Innovation Promotion Association(Y2021070)and International Partnership Program(112GJHZ2022002FN)of Chinese Academy of SciencesShanghai Human Resources and Social Security Bureau(2022670)China Postdoctoral Science Foundation(2023T160661,2022TQ0353 and 2022M713261).
文摘Metasurfaces provide a potent platform for the dynamic manipulation of electromagnetic waves.Coupled with phase-change materials,they facilitate the creation of versatile metadevices,showcasing various tunable functions based on the transition between amorphous and crystalline states.However,the inherent limitation in tunable states imposes constraints on the multiplexing channels of metadevices.Here,this paper introduces a novel approach-a multi-functional metadevice achieved through the two-level control of the encoding phasechange metaatoms.Utilizing the phase-change material Ge_(2)Sb_(2)Se_(4)Te1(GSST)and high refractive-index liquid diiodomethane(CH_(2)I_(2)),this paper showcases precise control over electromagnetic wave manipulation.The GSST state governs the tunable function,switching it ON and OFF,while the presence of liquid in the hole dictates the deflection angle when the tunable function is active.Importantly,our tunable coding metasurface exhibits robust performance across a broad wavelength spectrum.The incorporation of high refractive-index liquid extends the regulatory dimension of the metadevice,enabling dynamic switching of encoding bit levels.This two-level tunable metadevice,rooted in phase-change materials,presents a promising avenue for the dynamic control of functions.
基金the National Natural Science Foundation of China(Grant No.22075146)to provide fund for conducting experiments。
文摘A kind of phase change material(PCM)-based nanocomposite was prepared and added into high energy propellants containing RDX as additives to investigate its effect on thermal decomposition and burning characteristic of high energy propellants.The effect of PCM-based nanocomposites on thermal decomposition of high energy propellants is investigated by TG/DSC-FTIR-MS technology.Due to the delayed protection effect(PCM-based nanocomposites can absorb lots of heat at the range of certain temperature when it undergoes structure change or phase transitions)of PCM-based nanocomposites under the thermal decomposition condition,the thermal stability of high energy propellants modified with PCMbased nanocomposites is improved.At the same time,the concentration of N2,NO2,H2O and CO_(2)is increased during thermal decomposition of high energy propellants whereas NO and CO is decreased.The burning gaseous products and burning characteristic of high energy propellants are studied by the combination of closed bomb test and Fourier transform infrared spectrum.The main burning gaseous products are N2,CO_(2),CO,H2O,CH4,etc.After the high energy propellant modified with PCM-based nanocomposites,the concentration of CH4is increased while CO,CO_(2) and H2O is decreased under the high-pressure burning condition.The progressivity factor of high energy propellants is increased by22.2%compared with the control sample while the maximum pressure is merely decreased 1.25%after the addition of the PCM-based nanocomposite,thus PCM-based nanocomposites can be used to adjust the burning process and improve the burning progressivity of high energy propellants.This study is expected to boost the practical application of PCM-based nanocomposite to the propellant formulation and effectively control the burning characteristic of high energy propellants.
基金Project(51408184)supported by the National Natural Science Foundation of ChinaProject(E2017202136)supported by the Natural Science Foundation of Hebei Province,China+1 种基金Project(BSBE2017-05)supported by the Opening Funds of State Key Laboratory of Building Safety and Built Environment and National Engineering Research Center of Building Technology,ChinaProject(QG2018-3)supported by Hebei Provincial Department of Transportation,China
文摘Phase change material(PCM)can reduce the indoor temperature fluctuation and humidity control material can adjust relative humidity used in buildings.In this study,a kind of composite phase change material particles(CPCMPs)were prepared by vacuum impregnation method with expanded perlite(EP)as supporting material and paraffin as phase change material.Thus,a PCM plate was fabricated by mould pressing method with CPCMPs and then composite phase change humidity control wallboard(CPCHCW)was prepared by spraying the diatom mud on the surface of PCM plate.The composition,thermophysical properties and microstructure were characterized using X-ray diffraction instrument(XRD),differential scanning calorimeter(DSC)and scanning electron microscope(SEM).Additionally,the hygrothermal performance of CPCHCW was characterized by temperature and humidity collaborative test.The results can be summarized as follows:(1)CPCMPs have suitable phase change parameters with melting/freezing point of 18.23°C/29.42°C and higher latent heat of 54.66 J/g/55.63 J/g;(2)the diatom mud can control the humidity of confined space with a certain volume;(3)the combination of diatom mud and PCM plate in CPCHCW can effectively adjust the indoor temperature and humidity.The above conclusions indicate the potential of CPCHCW in the application of building energy efficiency.
基金Project(51408184)supported by the National Natural Science Foundation of ChinaProject(E2017202136)supported by the Natural Science Foundation of Hebei Province,China+1 种基金Project(BSBE2017-05)supported by Opening Funds of State Key Laboratory of Building Safety and Built Environment and National Engineering Research Center of Building Technology,ChinaProject(QG2018-3)supported by Hebei Provincial Department of Transportation,China
文摘A binary eutectic mixture composed of tetradecanol(TD)and myristic acid(MA)was maximally absorbed into the microstructures of expanded perlite(EP)and expanded vermiculite(EVMT),respectively,through a self-made vacuum adsorption roller to prepare phase change material(PCM)particle(PCP).Then EP and EVMT-based composite PCM plates were respectively fabricated through a mold pressing method.The thermal property,chemical stability,microstructure and durability were characterized by differential scanning calorimeter(DSC),Fourier transform infrared spectroscope(FT-IR),scanning electron microscope(SEM)and thermal cycling tests,respectively.The results show that both PCPs have high latent heats with 110 J/g for EP-based PCP and more than 130 J/g for EVMT-based PCP,compact microstructure without PCM leakage,stable chemical property and good durability.The research results have proved the feasibility for the vacuum adsorption roller used in the composite PCM fabrication.Results of thermal storage performance experiment indicate that the fabricated PCM plates have better thermal inertia than common building materials,and the thermal storage performance of PCM plates has nonlinearly changed with outside air velocity and temperature increase.Therefore,PCM plates show a significant potential for the practical application of building thermal storage.
文摘In the present work,paraffin phase change material is used as quenchant for the heat treatment of 42CrMo4 alloy and compared with water,air,and CuO doped paraffin.The samples were prepared based on ASTM E 8M-98 standard for tensile test and then heated up to 830°C,kept for 4 h in an electric resistance furnace and then quenched in the mentioned media.Elastic modulus,yield strength,ultimate tensile strength,elongation,and modulus of toughness were determined according to the obtained stress?strain curves.Moreover,the hardness and microstructural evolution were investigated after the heat treatment at different media.The samples quenched in paraffin and CuO-doped paraffin are higher in ultimate tensile strength(1439 and 1306 MPa,respectively)than those quenched in water(1190 MPa)and air(1010 MPa).The highest hardness,with a value of HV 552,belonged to the sample quenched in CuO-doped paraffin.The microstructural studies revealed that the non-tempered steel had a ferrite/pearlite microstructure,while by quenching in water,paraffin and CuO-doped paraffin,ferrite/martensite microstructures were achieved.It is also observed that using the air as quenchant resulted in a three-phase bainite/martensite/ferrite microstructure.
文摘In the present work,effects of various heat transfer fluids on the discharging performance of a phase change material(PCM) included cylindrical container are numerically assessed during forced convection.The heat transfer fluid air,hydrogen,water and nanofluid with alumina particles are used and the the geometric variation of the PCM embedded region is also considered.The finite element method is used as the solver.Dynamic features of heat exchange with various phases are explored for different heat transfer fluid types,Reynolds number(between 100 and 300) and PCM embedded region geometric variation(h_(x)between 0.01 d_(1) and 0.65 d_(1),hybetween 0.1 h_(1) and 0.4 h_(1)).It is observed that discharging time is significantly influenced by the heat transfer fluid type while full phase transition time for air is obtained as more than 10 times when hydrogen is utilized as heat transfer fluid.The best performance is achieved with nanofluid.When the PCM integrated region size is reduced,discharging time is generally reduced while due to the form of the geometry,vortex formation is established in the PCM region.This results in performance degeneration at the highest radius and height of the inner cylinder.Discharging time increases by about 12% when radius of the inner cylinder is increased from h_(x)=0.35 d_(1) to h_(x)=0.45 d_(1).Dynamic features of PCM temperature and liquid fraction are affected with Reynolds number while discharging time is reduced by about 48% when configurations with the lowest and highest Reynolds number are compared.
文摘Antarcticite, a mineral with composition CaCl2·6H2O and structure P321, is an ideal phase change material (PCM) due to the high energy storage density and good thermal conductivity. However, the existence of supercooling and incongruent melting would weaken its thermal properties and then hinder its application. In this paper, based on the cooling curve method and DSC measurement, we experimentally selected the minor SrCl2·6H2O as the nucleator and carboxyl methyl cellulose as the thickening agent, which could significantly reduce supercooling and partly restrain the incongruent melting. Moreover, we incorporated Antarcticite as PCM into building envelopes in four different cases, the simulation of the heat transfer processes showed that the temperature fluctuation could be reduced to about 2℃ in the best case.
文摘Paraffin/γ-Al2O3 composites as phase change energy storage materials were prepared by absorbing paraffin in porous network of γ-Al2O3.In the composite materials,paraffin was used as a phase change material(PCM)for thermal energy storage,and γ-Al2O3 acted as supporting materials.Characterizations were conducted to evaluate the energy storage performance of the composites,and differential scanning calorimeter results showed that the PCM-3 composite has melting latent heat of 112.9 kJ/kg with a melting temperature of 62.9 ℃.Due to strong capillary force and surface tension between paraffin and γ-Al2O3,the leakage of melted paraffin from the composites can be effectively prevented.Therefore,the paraffin/γ-Al2O3 composites have a good thermal stability and can be used repeatedly.
基金Supported by National 11th Five-Year Plan of Dept.of Science,China(2006BAA04B02,2006BAJ02A09)
文摘The conventional solar heating floor system contains a big water tank to store energy in the day time for heating at night,which takes much building space and is very heavy.In order to reduce the water tank volume even to cancel the tank,a novel structure of integrated water pipe floor heating system using shape-stabilized phase change materials(SSPCM)for thermal energy storage was developed.A numerical model was developed to analyze the performance of SSPCM floor heating system under the intermittent heating condition,which was verified by our experimental data.The thermal performance of the heating system and the effects of various factors on it were analyzed numerically.The factors including phase transition temperature,heat of fusion,thermal conductivity of SSPCM and thermal conductivity of the decoration material were analyzed.The results show that tm and kd are the most import influencing factors on the thermal performance of SSPCM floor heating system,since they determine the heat source temperature and thermal resistance between SSPCM plates and indoor air,respectively.Hm should be large to store enough thermal energy in the day time for nighttimes heating.The effects of kp can be ignored in this system.The SSPCM floor heating system has potential of making use of the daytime solar energy for heating at night efficiently in various climates when its structure is properly designed.
文摘The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano technology provides an opportunity for an appreciable enhancement in the thermal conductivity of the phase change materials.In order to explore the possibilities of using nano technology for various applications,a detailed parametric study is carried out,to analyse the heat transfer enhancement potential with the thermal conductivity of the conventional phase change materials and nano enhanced phase change materials under various flow conditions of the heat transfer fluid.Initially,the theoretical equation,used to determine the time for outward cylindrical solidification of the phase change material,is validated with the experimental results.It is inferred from the parametric studies,that for paraffinic phase change materials with air as the heat transfer fluid,the first step should be to increase the heat transfer coefficient to the maximum extent,before making any attempt to increase the thermal conductivity of the phase change materials,with the addition of nano particles.When water is used as the phase change material,the addition of nano particles is recommended to achieve better heat transfer,when a liquid is used as the heat transfer fluid.
基金Project(50878133) supported by the National Natural Science Foundation of ChinaProject (2007R37) supported by Excellent Talents in Liaoning Province+1 种基金Project (2008S193) supported by the Key Laboratory Fund of Education Department in Liaoning ProvinceProject(1071211-1-00) supported by the Scientific and Technical Fund Project Subsidy of Shenyang Province
文摘Based on the phase change material (PCM) thermal characteristic,some testing methods such as differential scanning calorimeter (DSC) etc were used to select the low melting mixture of capric and lauric acid as PCM of phase change wallboard (PCW). The PCW room was established,and some contrast analysis of the storage and exchange thermal characteristic of PCW room and ordinary wall room were made under different conditions. The results show that the fluctuation of indoor air temperature in PCW room is smaller than that in ordinary room obviously. The exchange energy of PCM room with outdoor is less than that of ordinary wall room. In the winter condition,PCW room utilizes valley period electricity to storage energy in the night,while releases at peak period electricity in daytime,which can divert 40% of peak load. In the summer condition,PCW room can reduce the peak cooling load by 25% compared with ordinary wall room.