期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Heat transfer enhanced inorganic phase change material compositing carbon nanotubes for battery thermal management and thermal runaway propagation mitigation 被引量:1
1
作者 Xinyi Dai Ping Ping +4 位作者 Depeng Kong Xinzeng Gao Yue Zhang Gongquan Wang Rongqi Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期226-238,I0006,共14页
Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan... Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well. 展开更多
关键词 Inorganic phase change material Carbon nanotube Battery thermal management Thermal runaway propagation Fire resistance ENCAPSULATION
在线阅读 下载PDF
Actively tuning anisotropic light-matter interaction in biaxial hyperbolic materialα-MoO_(3) using phase change material VO_(2) and graphene
2
作者 周昆 胡杨 +2 位作者 吴必园 仲晓星 吴小虎 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期631-638,共8页
Anisotropic hyperbolic phonon polaritons(PhPs)in natural biaxial hyperbolic materialα-MoO_(3) has opened up new avenues for mid-infrared nanophotonics,while active tunability ofα-MoO_(3) PhPs is still an urgent prob... Anisotropic hyperbolic phonon polaritons(PhPs)in natural biaxial hyperbolic materialα-MoO_(3) has opened up new avenues for mid-infrared nanophotonics,while active tunability ofα-MoO_(3) PhPs is still an urgent problem necessarily to be solved.In this study,we present a theoretical demonstration of actively tuningα-MoO_(3) PhPs using phase change material VO_(2) and graphene.It is observed thatα-MoO_(3) PhPs are greatly dependent on the propagation plane angle of PhPs.The insulator-to-metal phase transition of VO_(2) has a significant effect on the hybridization PhPs of theα-MoO_(3)/VO_(2) structure and allows to obtain actively tunableα-MoO_(3) PhPs,which is especially obvious when the propagation plane angle of PhPs is 900.Moreover,when graphene surface plasmon sources are placed at the top or bottom ofα-MoO_(3) inα-MoO_(3)/VO_(2)structure,tunable coupled hyperbolic plasmon-phonon polaritons inside its Reststrahlen bands(RB s)and surface plasmonphonon polaritons outside its RBs can be achieved.In addition,the above-mentionedα-MoO_(3)-based structures also lead to actively tunable anisotropic spontaneous emission(SE)enhancement.This study may be beneficial for realization of active tunability of both PhPs and SE ofα-MoO_(3),and facilitate a deeper understanding of the mechanisms of anisotropic light-matter interaction inα-MoO_(3) using functional materials. 展开更多
关键词 light-matter interaction hyperbolic material phase change material GRAPHENE
在线阅读 下载PDF
Scattered Co-anchored MoS_(2)synergistically boosting photothermal capture and storage of phase change materials
3
作者 Yang Li Panpan Liu +3 位作者 Yan Gao Yuhao Feng Peicheng Li Xiao Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期208-215,I0005,共9页
Pristine phase change materials(PCMs)suffer from inherent deficiencies of poor solar absorption and photothermal conversion.Herein,we proposed a strategy of co-incorporation of zero-dimensional(OD)metal nanoparticles ... Pristine phase change materials(PCMs)suffer from inherent deficiencies of poor solar absorption and photothermal conversion.Herein,we proposed a strategy of co-incorporation of zero-dimensional(OD)metal nanoparticles and two-dimensional(2D)photothermal materials in PCMs for efficient capture and conversion of solar energy into thermal energy.Highly scattered Co-anchored MoS_(2)nanoflower cluster serving as photon and phonon triggers was prepared by in-situ hydrothermal growth of ZIF67 polyhedron on 2D MoS_(2)and subsequent high-temperature carbonization.After encapsulating thermal storage unit(paraffin wax),the obtained composite PCMs integrated high-performance photothermal conversion and thermal energy storage capability.Benefiting from the synergistic enhancement of OD Co nanoparticles with localized surface plasmon resonance effect,carbon layer with the conjugation effect and 2D MoS_(2)with strong solar absorption,composite PCMs exhibited a high photothermal conversion efficiency of 95.19%,Additionally,the resulting composite PCMs also demonstrated long-term thermal sto rage stability and durable structu ral stability after 300 thermal cycles.The proposed collabo rative co-incorporation strategy provides some innovative references for developing next-generation photothermal PCMs in solar energy utilization. 展开更多
关键词 phase change materials Photothermal conversion Thermal energy storage
在线阅读 下载PDF
Multiple structure graphite stabilized stearic acid as composite phase change materials for thermal energy storage 被引量:4
4
作者 Xinbo Zhao Chuanchang Li +3 位作者 Kaihao Bai Baoshan Xie Jian Chen Qingxia Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第6期1419-1428,共10页
This paper used 3 types of graphite with different physical structures as the porous matrix to prepare composite phase change materials(PCMs),and investigated their photo-thermal conversion performance and application... This paper used 3 types of graphite with different physical structures as the porous matrix to prepare composite phase change materials(PCMs),and investigated their photo-thermal conversion performance and application in battery thermal management.Multiple structure graphite minerals,including microcrystalline graphite(MG),scale graphite(SG),and expanded graphite(EG)were used as porous matrix,while stearic acid(SA)acts as the phase change material.The vacuum impregnation method was applied to prepare SA/MG,SA/SG,SA/EG,and SA/MG1,and SA/EG1was/were prepared by the ethyl alcohol method.Results show that the thermal conductivities of all composite phase change materials were 10.82 to 22.06 times higher than that of the pure SA.Thermogravimetric(TG)analysis showed that the loadages of SA were 43.61%,18.74%,and 92.66%for SA/MG,SA/SG,and SA/EG respectively.The load rates of SA were 18.98%and 18.88%for SA/MG1 and SA/EG1,respectively.For the 3 types of graphite materials of different dimensions,the BET(Brunauer,Emmett,and Teller)surface area determines the maximum load of SA.The Fourier-transform infrared(FTIR)and X-ray diffraction(XRD)results indicated that there was good compatibility between the SA and the supports.The SA/EG1 has better thermophysical properties in heat energy storage and release process.The thermal infrared images show that SA/EG1 has higher sensitivity to the temperature changes.SA/EG1 has better photo-heat conversion performance than SA/SG and SA/MG1 attributed to the multilayer structure of EG.SA/EG has better thermal management performance in the Li-ion batteries discharge process. 展开更多
关键词 phase change material Microcrystalline graphite Scale graphite Expanded graphite Photo-thermal conversion Thermal management
在线阅读 下载PDF
Bifunctional Liquid Metals Allow Electrical Insulating Phase Change Materials to Dual-Mode Thermal Manage the Li-Ion Batteries 被引量:4
5
作者 Cong Guo Lu He +5 位作者 Yihang Yao Weizhi Lin Yongzheng Zhang Qin Zhang Kai Wu Qiang Fu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期224-238,共15页
Phase change materials(PCMs)are expected to achieve dual-mode thermal management for heating and cooling Li-ion batteries(LIBs)according to real-time thermal conditions,guaranteeing the reliable operation of LIBs in b... Phase change materials(PCMs)are expected to achieve dual-mode thermal management for heating and cooling Li-ion batteries(LIBs)according to real-time thermal conditions,guaranteeing the reliable operation of LIBs in both cold and hot environments.Herein,we report a liquid metal(LM)modified polyethylene glycol/LM/boron nitride PCM,capable of dual-mode thermal managing the LIBs through photothermal effect and passive thermal conduction.Its geometrical conformation and thermal pathways fabricated through ice-template strategy are conformable to the LIB’s structure and heat-conduction characteristic.Typically,soft and deformable LMs are modified on the boron nitride surface,serving as thermal bridges to reduce the contact thermal resistance among adjacent fillers to realize high thermal conductivity of 8.8 and 7.6 W m^(−1) K^(−1) in the vertical and in-plane directions,respectively.In addition,LM with excellent photothermal performance provides the PCM with efficient battery heating capability if employing a controllable lighting system.As a proof-of-concept,this PCM is manifested to heat battery to an appropriate temperature range in a cold environment and lower the working temperature of the LIBs by more than 10℃ at high charging/discharging rate,opening opportunities for LIBs with durable working performance and evitable risk of thermal runaway. 展开更多
关键词 phase change materials Liquid metal Thermal conductivity Photothermal conversion Battery thermal management
在线阅读 下载PDF
Characterization of size effect of natural convection in melting process of phase change material in square cavity 被引量:4
6
作者 Shi-Hao Cao Hui Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第10期400-409,共10页
The accelerating effect of natural convection on the melting of phase change material(PCM)has been extensively demonstrated.However,such an influence is directly dependent on the size and shape of domain in which phas... The accelerating effect of natural convection on the melting of phase change material(PCM)has been extensively demonstrated.However,such an influence is directly dependent on the size and shape of domain in which phase change happens,and how to quantitatively describe such an influence is still challenging.On the other hand,the simulation of natural convection process is considerably difficult,involving complex fluid flow in a region changing with time,and is typically not operable in practice.To overcome these obstacles,the present study aims to quantitatively investigate the size effect of natural convection in the melting process of PCM paraffin filled in a square latent heat storage system through experiment and simulation,and ultimately a correlation equation to represent its contribution is proposed.Firstly,the paraffin melting experiment is conducted to validate the two-dimensional finite element model based on the enthalpy method.Subsequently,a comprehensive investigation is performed numerically for various domain sizes.The results show that the melting behavior of paraffin is dominated by the thermal convection.When the melting time exceeds 50 s,a whirlpoor flow caused by natural convection appears in the upper liquid phase region close to the heating wall,and then its influencing range gradually increases to accelerate the melting of paraffin.However,its intensity gradually decreases as the distance between the melting front and the heating wall increases.Besides,it is found that the correlation between the total melting time and the domain size approximately exhibits a power law.When the domain size is less than 2 mm,the accelerating effect of natural convection becomes very weak and can be ignored in practice.Moreover,in order to simplify the complex calculation of natural convection,the equivalent thermal conductivity concept is proposed to include the contribution of natural convection to the total melting time,and an empirical correlation is given for engineering applications. 展开更多
关键词 phase change material natural convection size effect equivalent thermal conductivity
在线阅读 下载PDF
Integrating thermal energy storage and microwave absorption in phase change material-encapsulated core-sheath MoS_(2)@CNTs 被引量:3
7
作者 Panpan Liu Yang Li +6 位作者 Zhaodi Tang Junjun Lv Piao Cheng Xuemei Diao Yu Jiang Xiao Chen Ge Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期41-49,共9页
Developing advanced nanocomposite integrating solar-driven thermal energy storage and thermal management functional microwave absorption can facilitate the cutting-edge application of phase change materials(PCMs).To c... Developing advanced nanocomposite integrating solar-driven thermal energy storage and thermal management functional microwave absorption can facilitate the cutting-edge application of phase change materials(PCMs).To conquer this goal,herein,two-dimensional MoS_(2) nanosheets are grown in situ on the surface of one-dimensional CNTs to prepare core-sheath MoS_(2)@CNTs for the encapsulation of paraffin wax(PW).Benefiting from the synergistic enhancement photothermal effect of MoS_(2) and CNTs,MoS_(2)@CNTs is capable of efficiently trapping photons and quickly transporting phonons,thus yielding a high solar-thermal energy conversion and storage efficiency of 94.97%.Meanwhile,PW/MoS_(2)@CNTs composite PCMs exhibit a high phase change enthalpy of 101.60 J/g and excellent lo ng-term thermal storage durability after undergoing multiple heating-cooling cycles.More attractively,PW/MoS_(2)@CNTs composite PCMs realize thermal management functional microwave absorption in heat-related electronic application scenarios,which is superior to the single microwave absorption of traditional materials.The minimum reflection loss(RL) for PW/MoS_(2)@CNTs is-28 dB at 12.91 GHz with a 2.0 mm thickness.This functional integration design provides some insightful references on developing advanced microwave absorbing composite PCMs,holding great potential towards high-efficiency solar energy utilization and thermally managed microwave absorption fields. 展开更多
关键词 phase change materials Core-sheath MoS_(2)@CNTs Solar-thermal energy conversion Thermal energy storage Microwave absorption
在线阅读 下载PDF
Effects of phase change material(PCM)-based nanocomposite additives on thermal decomposition and burning characteristic of high energy propellants containing RDX 被引量:1
8
作者 En-fa Fu Na Sun Zheng-gang Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第4期557-566,共10页
A kind of phase change material(PCM)-based nanocomposite was prepared and added into high energy propellants containing RDX as additives to investigate its effect on thermal decomposition and burning characteristic of... A kind of phase change material(PCM)-based nanocomposite was prepared and added into high energy propellants containing RDX as additives to investigate its effect on thermal decomposition and burning characteristic of high energy propellants.The effect of PCM-based nanocomposites on thermal decomposition of high energy propellants is investigated by TG/DSC-FTIR-MS technology.Due to the delayed protection effect(PCM-based nanocomposites can absorb lots of heat at the range of certain temperature when it undergoes structure change or phase transitions)of PCM-based nanocomposites under the thermal decomposition condition,the thermal stability of high energy propellants modified with PCMbased nanocomposites is improved.At the same time,the concentration of N2,NO2,H2O and CO_(2)is increased during thermal decomposition of high energy propellants whereas NO and CO is decreased.The burning gaseous products and burning characteristic of high energy propellants are studied by the combination of closed bomb test and Fourier transform infrared spectrum.The main burning gaseous products are N2,CO_(2),CO,H2O,CH4,etc.After the high energy propellant modified with PCM-based nanocomposites,the concentration of CH4is increased while CO,CO_(2) and H2O is decreased under the high-pressure burning condition.The progressivity factor of high energy propellants is increased by22.2%compared with the control sample while the maximum pressure is merely decreased 1.25%after the addition of the PCM-based nanocomposite,thus PCM-based nanocomposites can be used to adjust the burning process and improve the burning progressivity of high energy propellants.This study is expected to boost the practical application of PCM-based nanocomposite to the propellant formulation and effectively control the burning characteristic of high energy propellants. 展开更多
关键词 phase change material Propellants NANOCOMPOSITE Thermal decomposition BURNING
在线阅读 下载PDF
Spatiotemporal phase change materials for thermal energy long-term storage and controllable release
9
作者 Yangeng Li Yan Kou +4 位作者 Keyan Sun Jie Chen Chengxin Deng Chaohe Fang Quan Shi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期228-236,I0006,共10页
Phase change materials(PCMs)have attracted much attention in the field of solar thermal utilization recently,due to their outstanding thermal energy storage performance.However,PCMs usually release their stored latent... Phase change materials(PCMs)have attracted much attention in the field of solar thermal utilization recently,due to their outstanding thermal energy storage performance.However,PCMs usually release their stored latent heat spontaneously as the temperature below the phase transition temperature,rendering thermal energy storage and release uncontrollable,thus hindering their practical application in time and space.Herein,we developed erythritol/sodium carboxymethylcellulose/tetrasodium ethylenediaminetetraacetate(ERY/CMC/EDTA-4Na)composite PCMs with novel spatiotemporal thermal energy storage properties,defined as spatiotemporal PCMs(STPCMs),which exhibit the capacity of thermal energy long-term storage and controllable release.Our results show that the composite PCMs are unable to lose latent heat due to spontaneous crystallization during cooling,but can controllably release thermal energy through cold crystallization during reheating.The cold-crystallization temperature and enthalpy of composite PCMs can be adjusted by proportional addition of EDTA-4Na to the composite.When the mass fractions of CMC and EDTA-4Na are both 10%,the composite PCMs can exhibit the optical coldcrystallization temperature of 51.7℃ and enthalpy of 178.1 J/g.The supercooled composite PCMs without latent heat release can be maintained at room temperature(10-25℃)for up to more than two months,and subsequently the stored latent heat can be controllably released by means of thermal triggering or heterogeneous nucleation.Our findings provide novel insights into the design and construction of new PCMs with spatiotemporal performance of thermal energy long-term storage and controllable release,and consequently open a new door for the development of advanced solar thermal utilization techniques on the basis of STPCMs. 展开更多
关键词 phase change materials Long-term thermal storage Controllable release ERYTHRITOL
在线阅读 下载PDF
Active control of surface plasmon polaritons with phase change materials
10
作者 漆元臻 蒋瞧 +1 位作者 向红 韩德专 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期428-432,共5页
Active control of surface plasmon polaritons(SPPs)is highly desired for nanophotonics.Here we employ a phase change material Ge_(2)Sb_(2)Te_(5)(GST)to actively manipulate the propagating direction of SPPs at the telec... Active control of surface plasmon polaritons(SPPs)is highly desired for nanophotonics.Here we employ a phase change material Ge_(2)Sb_(2)Te_(5)(GST)to actively manipulate the propagating direction of SPPs at the telecom wavelength.By utilizing the phase transition-induced refractive index change of GST,coupled with interference effects,a nanoantenna pair containing GST is designed to realize switchable one-way launching of SPPs.Devices based on the nanoantenna pairs are proposed to manipulate SPPs,including the direction tuning of SPP beams,switchable SPP focusing,and switchable cosine–Gauss SPP beam generating.Our design can be employed in compact optical circuits and photonics integration. 展开更多
关键词 surface plasmon polaritons phase change materials direction control non-diffractive
在线阅读 下载PDF
Crystal structure and thermochemical properties of bis(1-octylammonium) tetrachlorochromate phase change materials
11
作者 卢冬飞 邸友莹 何东华 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第8期126-133,共8页
A new crystalline complex (C8H17NH3)2CdCI4(s) (abbreviated as CsCd(s)) is synthesized by liquid phase reaction. The crystal structure and composition of the complex are determined by single crystal X-ray diffr... A new crystalline complex (C8H17NH3)2CdCI4(s) (abbreviated as CsCd(s)) is synthesized by liquid phase reaction. The crystal structure and composition of the complex are determined by single crystal X-ray diffraction, chemical analysis, and elementary analysis. It is triclinic, the space group is P-1 and Z = 2. The lattice potential energy of the title complex is calculated to be UpoT (CsCd(s))=978.83 kJ.mol^-1 from crystallographic data. Low-temperature heat capacities of the complex are measured by using a precision automatic adiabatic calorimeter over a temperature range from 78 K to 384 K. The temperature, molar enthalpy, and entropy of the phase transition for the complex are determined to be 307.3±0.15 K, 10.15±0.23 kJ.mol^-1, and 33.054-0.78 J.K^-1.mol^-1 respectively for the endothermic peak. Two polynomial equations of the heat capacities each as a function of temperature are fitted by using the leastsquare method. Smoothed heat capacity and thermodynamic functions of the complex are calculated based on the fitted polynomials. 展开更多
关键词 bis(1-octylammonium) tetrachlorochromate X-ray crystallography phase change materials low-temperature heat capacity solid-solid phase transition
在线阅读 下载PDF
Performance analysis of thermal storage unit with possible nano enhanced phase change material in building cooling applications
12
作者 Solomon G Ravikumar Ravikumar T S +1 位作者 Raj V Antony Aroul Velraj R 《储能科学与技术》 CAS 2013年第2期91-102,共12页
The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano... The heat transfer performance of the phase change materials used in free cooling and air conditioning applications is low,due to the poor thermal conductivity of the materials.The recent phenomenal advancement in nano technology provides an opportunity for an appreciable enhancement in the thermal conductivity of the phase change materials.In order to explore the possibilities of using nano technology for various applications,a detailed parametric study is carried out,to analyse the heat transfer enhancement potential with the thermal conductivity of the conventional phase change materials and nano enhanced phase change materials under various flow conditions of the heat transfer fluid.Initially,the theoretical equation,used to determine the time for outward cylindrical solidification of the phase change material,is validated with the experimental results.It is inferred from the parametric studies,that for paraffinic phase change materials with air as the heat transfer fluid,the first step should be to increase the heat transfer coefficient to the maximum extent,before making any attempt to increase the thermal conductivity of the phase change materials,with the addition of nano particles.When water is used as the phase change material,the addition of nano particles is recommended to achieve better heat transfer,when a liquid is used as the heat transfer fluid. 展开更多
关键词 thermal storage phase change material nano particle solidification time building cooling doi.3969/j.issn.2095-4239.2013.02.002 CLC number:TK 51 Document code:A Article ID-4239(2013)02-091-12
在线阅读 下载PDF
Enhancing Thermal Protection in Lithium Batteries with Power Bank‑Inspired Multi‑Network Aerogel and Thermally Induced Flexible Composite Phase Change Material
13
作者 Zaichao Li Feng Cao +2 位作者 Yuang Zhang Shufen Zhang Bingtao Tang 《Nano-Micro Letters》 2025年第7期285-304,共20页
Thermal runaway(TR)is considered a significant safety hazard for lithium batteries,and thermal protection materials are crucial in mitigating this risk.However,current thermal protection materials generally suffer fro... Thermal runaway(TR)is considered a significant safety hazard for lithium batteries,and thermal protection materials are crucial in mitigating this risk.However,current thermal protection materials generally suffer from poor mechanical properties,flammability,leakage,and rigid crystallization,and they struggle to continuously block excess heat transfer and propagation once thermal saturation occurs.This study proposes a novel type of thermal protection material:an aerogel coupled composite phase change material(CPCM).The composite material consists of gelatin/sodium alginate(Ge/SA)composite biomass aerogel as an insulating component and a thermally induced flexible CPCM made from thermoplastic polyester elastomer as a heat-absorbing component.Inspired by power bank,we coupled the aerogel with CPCM through the binder,so that CPCM can continue to‘charge and store energy’for the aerogel,effectively absorbing heat,delaying the heat saturation phenomenon,and maximizing the duration of thermal insulation.The results demonstrate that the Ge/SA aerogel exhibits excellent thermal insulation(with a temperature difference of approximately 120℃ across a 1 cm thickness)and flame retardancy(achieving a V-0 flame retardant rating).The CPCM exhibits high heat storage density(811.9 J g^(−1)),good thermally induced flexibility(bendable above 40℃),and thermal stability.Furthermore,the Ge/SA-CPCM coupled composite material shows even more outstanding thermal insulation performance,with the top surface temperature remaining at 89℃ after 100 min of exposure to a high temperature of 230℃.This study provides a new direction for the development of TR protection materials for lithium batteries. 展开更多
关键词 Lithium-ion battery thermal runaway Thermal protection material Multinetwork aerogel Flexible composite phase change material
在线阅读 下载PDF
Angular-tunable on-chip coding metasurface enabled by phase-change material with immersion liquid
14
作者 LI Xue-Nan ZHAO Zeng-Yue +4 位作者 YU Fei-Long CHEN Jin LI Guan-Hai LI Zhi-Feng CHEN Xiao-Shuang 《红外与毫米波学报》 CSCD 北大核心 2024年第6期806-812,共7页
Metasurfaces provide a potent platform for the dynamic manipulation of electromagnetic waves.Coupled with phase-change materials,they facilitate the creation of versatile metadevices,showcasing various tunable functio... Metasurfaces provide a potent platform for the dynamic manipulation of electromagnetic waves.Coupled with phase-change materials,they facilitate the creation of versatile metadevices,showcasing various tunable functions based on the transition between amorphous and crystalline states.However,the inherent limitation in tunable states imposes constraints on the multiplexing channels of metadevices.Here,this paper introduces a novel approach-a multi-functional metadevice achieved through the two-level control of the encoding phasechange metaatoms.Utilizing the phase-change material Ge_(2)Sb_(2)Se_(4)Te1(GSST)and high refractive-index liquid diiodomethane(CH_(2)I_(2)),this paper showcases precise control over electromagnetic wave manipulation.The GSST state governs the tunable function,switching it ON and OFF,while the presence of liquid in the hole dictates the deflection angle when the tunable function is active.Importantly,our tunable coding metasurface exhibits robust performance across a broad wavelength spectrum.The incorporation of high refractive-index liquid extends the regulatory dimension of the metadevice,enabling dynamic switching of encoding bit levels.This two-level tunable metadevice,rooted in phase-change materials,presents a promising avenue for the dynamic control of functions. 展开更多
关键词 coding metasurface tunable control phase change material electromagnetic wave manipulation
在线阅读 下载PDF
Recent advances in graphene-based phase change composites for thermal energy storage and management 被引量:2
15
作者 Qiang Zhu Pin Jin Ong +4 位作者 Si Hui Angela Goh Reuben J.Yeo Suxi Wang Zhiyuan Liu Xian Jun Loh 《Nano Materials Science》 EI CAS CSCD 2024年第2期115-138,共24页
Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase ... Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized. 展开更多
关键词 phase change material NANOCOMPOSITES Solar energy Sustainable energy Thermo-regulation
在线阅读 下载PDF
Preparation of Paraffin/γ-Al2O3 Composites as Phase Change Energy Storage Materials 被引量:1
16
作者 赵亮 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2011年第5期921-924,951,共5页
Paraffin/γ-Al2O3 composites as phase change energy storage materials were prepared by absorbing paraffin in porous network of γ-Al2O3.In the composite materials,paraffin was used as a phase change material(PCM)for t... Paraffin/γ-Al2O3 composites as phase change energy storage materials were prepared by absorbing paraffin in porous network of γ-Al2O3.In the composite materials,paraffin was used as a phase change material(PCM)for thermal energy storage,and γ-Al2O3 acted as supporting materials.Characterizations were conducted to evaluate the energy storage performance of the composites,and differential scanning calorimeter results showed that the PCM-3 composite has melting latent heat of 112.9 kJ/kg with a melting temperature of 62.9 ℃.Due to strong capillary force and surface tension between paraffin and γ-Al2O3,the leakage of melted paraffin from the composites can be effectively prevented.Therefore,the paraffin/γ-Al2O3 composites have a good thermal stability and can be used repeatedly. 展开更多
关键词 phase change material thermal energy storage Γ-AL2O3 PARAFFIN
在线阅读 下载PDF
Spider Web‑Inspired Graphene Skeleton‑Based High Thermal Conductivity Phase Change Nanocomposites for Battery Thermal Management 被引量:17
17
作者 Ying Lin Qi Kang +4 位作者 Han Wei Hua Bao Pingkai Jiang Yiu‑Wing Mai Xingyi Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第11期308-321,共14页
Phase change materials(PCMs)can be used for efficient thermal energy harvesting,which has great potential for cost-effective thermal management and energy storage.However,the low intrinsic thermal conductivity of poly... Phase change materials(PCMs)can be used for efficient thermal energy harvesting,which has great potential for cost-effective thermal management and energy storage.However,the low intrinsic thermal conductivity of polymeric PCMs is a bottleneck for fast and efficient heat harvesting.Simultaneously,it is also a challenge to achieve a high thermal conductivity for phase change nanocomposites at low filler loading.Although constructing a three-dimensional(3D)thermally conductive network within PCMs can address these problems,the anisotropy of the 3D framework usually leads to poor thermal conductivity in the direction perpendicular to the alignment of fillers.Inspired by the interlaced structure of spider webs in nature,this study reports a new strategy for fabricating highly thermally conductive phase change composites(sw-GS/PW)with a 3D spider web(sw)-like structured graphene skeleton(GS)by hydrothermal reaction,radial freeze-casting and vacuum impregnation in paraffin wax(PW).The results show that the sw-GS hardly affected the phase transformation behavior of PW at low loading.Especially,sw-GS/PW exhibits both high cross-plane and in-plane thermal conductivity enhancements of~1260%and~840%,respectively,at an ultra-low filler loading of 2.25 vol.%.The thermal infrared results also demonstrate that sw-GS/PW possessed promising applications in battery thermal management. 展开更多
关键词 Thermal conductivity Radial freeze-casting phase change materials 3D graphene aerogel Thermal management
在线阅读 下载PDF
A Thermoregulatory Flexible Phase Change Nonwoven for All‑Season High‑Efficiency Wearable Thermal Management 被引量:10
18
作者 Hanqing Liu Feng Zhou +9 位作者 Xiaoyu Shi Keyan Sun Yan Kou Pratteek Das Yangeng Li Xinyu Zhang Srikanth Mateti Ying Chen Zhong‑Shuai Wu Quan Shi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期259-270,共12页
Phase change materials have a key role for wearable thermal management,but suffer from poor water vapor permeability,low enthalpy value and weak shape stability caused by liquid phase leakage and intrinsic rigidity of... Phase change materials have a key role for wearable thermal management,but suffer from poor water vapor permeability,low enthalpy value and weak shape stability caused by liquid phase leakage and intrinsic rigidity of solid–liquid phase change materials.Herein,we report for the first time a versatile strategy for designed assembly of high-enthalpy flexible phase change nonwovens(GB-PCN)by wet-spinning hybrid grapheneboron nitride(GB)fiber and subsequent impregnating paraffins(e.g.,eicosane,octadecane).As a result,our GB-PCN exhibited an unprecedented enthalpy value of 206.0 J g^(−1),excellent thermal reliability and anti-leakage capacity,superb thermal cycling ability of 97.6%after 1000 cycles,and ultrahigh water vapor permeability(close to the cotton),outperforming the reported PCM films and fibers to date.Notably,the wearable thermal management systems based on GB-PCN for both clothing and face mask were demonstrated,which can maintain the human body at a comfortable temperature range for a significantly long time.Therefore,our results demonstrate huge potential of GB-PCN for human-wearable passive thermal management in real scenarios. 展开更多
关键词 phase change materials GRAPHENE Boron nitride NONWOVEN Wearable thermal management
在线阅读 下载PDF
Model-based optimal design of phase change ionic liquids for efficient thermal energy storage 被引量:3
19
作者 Huaiwei Shi Xiang Zhang +1 位作者 Kai Sundmacher Teng Zhou 《Green Energy & Environment》 SCIE CSCD 2021年第3期392-404,共13页
The selection of phase change material(PCM)plays an important role in developing high-efficient thermal energy storage(TES)processes.Ionic liquids(ILs)or organic salts are thermally stable,non-volatile,and non-flammab... The selection of phase change material(PCM)plays an important role in developing high-efficient thermal energy storage(TES)processes.Ionic liquids(ILs)or organic salts are thermally stable,non-volatile,and non-flammable.Importantly,researchers have proved that some ILs possess higher latent heat of fusion than conventional PCMs.Despite these attractive characteristics,yet surprisingly,little research has been performed to the systematic selection or structural design of ILs for TES.Besides,most of the existing work is only focused on the latent heat when selecting PCMs.However,one should note that other properties such as heat capacity and thermal conductivity could affect the TES performance as well.In this work,we propose a computer-aided molecular design(CAMD)based method to systematically design IL PCMs for a practical TES process.The effects of different IL properties are simultaneously captured in the IL property models and TES process models.Optimal ILs holding a best compromise of all the properties are identified through the solution of a formulated CAMD problem where the TES performance of the process is maximized.[MPyEtOH][TfO]is found to be the best material and excitingly,the identified top nine ILs all show a higher TES performance than the traditional PCM paraffin wax at 10 h thermal charging time. 展开更多
关键词 Ionic liquid phase change material Thermal energy storage Computer-aided molecular design Process modelling and evaluation
在线阅读 下载PDF
Mechanically strong,flexible,and multi-responsive phase change films with a nacre-mimetic structure for wearable thermal management 被引量:1
20
作者 Jiankang Zhang Jiahui Mu +1 位作者 Sheng Chen Feng Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期229-239,I0006,共12页
Phase change materials(PCMs)are a highly promising candidate for thermal energy storage owing to their large latent heat and chemical stability.However,their intrinsic brittle induces poor flexibility and low mechanic... Phase change materials(PCMs)are a highly promising candidate for thermal energy storage owing to their large latent heat and chemical stability.However,their intrinsic brittle induces poor flexibility and low mechanical strength,which limits them use for wearable thermal management.And,the electrical insulation and weak solar absorption make them lack multi-responsive capability.Herein,we report a facile strategy to synthesize mechanically strong and flexible multi-responsive phase change films by stirring an aqueous dispersion of cellulose nanofibrils(CNFs),MXene(Ti_(2)C_(3))nanosheets,and polyethylene glycol(PEG),followed by air-drying self-assembly and coating with hydrophobic fluorocarbon.The hydrogen bonds and nacre-mimetic synergistic toughening networks formed by ternary CNFs,Ti_(2)C_(3)nanosheets,and PEG endow films with high mechanical strength(16.7 MPa)and strain(10.4%),which are 18.6 and 8.7 times higher than those of pure PEG film,respectively.The films exhibit outstanding flexibility and do not crack or fracture even when bent,twisted,and folded into a complex small boat.Meanwhile,the laminar structure formed by the self-assembly Ti_(3)C_(2)nanosheets enhances electrical conductivity(3.95 S/m)and solar absorption,affording excellent electro-thermal(68.3%–81.0%)and solarthermal(85.6%–90.6%)conversion efficiency,thus achieving multi-response to external stimuli(electron/solar radiation).In addition,the as-prepared films also deliver large latent heat(136.1 J/g),outstanding cyclic and shape stability,leak-free encapsulation even under compressed at above 5000 times its weight,excellent hydrophobicity(131.4°),and self-cleaning function.This work paves the way for developing flexible,mechanically strong,and self-cleaning phase change film with multi-responsive function for wearable thermal management devices under high humidity condition. 展开更多
关键词 phase change materials FLEXIBLE Mechanically strong Multi-responsive Wearable thermal management
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部