The purpose of this paper is to reduce the error when measuring high dielectric constant materials.In this paper,the reason why the error introduced is analyzed firstly.Then,with HFSS,the method of choosing the size o...The purpose of this paper is to reduce the error when measuring high dielectric constant materials.In this paper,the reason why the error introduced is analyzed firstly.Then,with HFSS,the method of choosing the size of cavity and the dimension of dielectric materials is proposed.And several error correction curves are provided for measuring high dielectric constant materials.Finally,the experiment is conducted to validate the feasibility of our analysis.展开更多
The robust fault detection filter design for uncertain linear systems with nonlinear perturbations is formulated as a two-objective optimization problem. Solvable conditions for the existence of such a robust fault de...The robust fault detection filter design for uncertain linear systems with nonlinear perturbations is formulated as a two-objective optimization problem. Solvable conditions for the existence of such a robust fault detection filter are given in terms of matrix inequalities (MIs), which can be solved by applying iterative linear matrix inequality (ILMI) techniques. Particularly, compared with two existing LMI methods, the developed algorithm is more generalized and less conservative.An illustrative example is given to show the effectiveness of the proposed method.展开更多
针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行...针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行性规则和改进的epsilon约束处理方法进行更新。在第一阶段,主种群和副种群分别探索约束Pareto前沿(CPF)与无约束Pareto前沿(UPF),从而获取UPF和CPF的位置信息;在第二阶段,设计一种分类方法,根据UPF与CPF的位置对CMOP进行分类,从而对不同类型的CMOP执行特定的进化策略;此外,提出一种随机扰动策略,在副种群进化到CPF附近时,对它进行随机扰动以产生一些位于CPF上的个体,从而促进主种群在CPF上的收敛与分布。把所提算法与6个具有代表性的算法:CMOES(Constrained Multi-objective Optimization based on Even Search)、dp-ACS(dual-population evolutionary algorithm based on Adaptive Constraint Strength)、c-DPEA(DualPopulation based Evolutionary Algorithm for constrained multi-objective optimization)、CAEAD(Constrained Evolutionary Algorithm based on Alternative Evolution and Degeneration)、BiCo(evolutionary algorithm with Bidirectional Coevolution)和DDCMOEA(Dual-stage Dual-population Evolutionary Algorithm for Constrained Multiobjective Optimization)在LIRCMOP和DASCMOP两个测试集上进行实验比较。实验结果表明,DPDSEA在23个问题中取得了15个最优反转世代距离(IGD)值和12个最优超体积(HV)值,展现了DPDSEA在处理复杂CMOP时显著的性能优势。展开更多
文摘The purpose of this paper is to reduce the error when measuring high dielectric constant materials.In this paper,the reason why the error introduced is analyzed firstly.Then,with HFSS,the method of choosing the size of cavity and the dimension of dielectric materials is proposed.And several error correction curves are provided for measuring high dielectric constant materials.Finally,the experiment is conducted to validate the feasibility of our analysis.
基金Supported by National Natural Science Foundation of P. R. China (60374021 and 60274015)Natural Science Foundation of Shandong Province (Y2002G05)
文摘The robust fault detection filter design for uncertain linear systems with nonlinear perturbations is formulated as a two-objective optimization problem. Solvable conditions for the existence of such a robust fault detection filter are given in terms of matrix inequalities (MIs), which can be solved by applying iterative linear matrix inequality (ILMI) techniques. Particularly, compared with two existing LMI methods, the developed algorithm is more generalized and less conservative.An illustrative example is given to show the effectiveness of the proposed method.
文摘针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行性规则和改进的epsilon约束处理方法进行更新。在第一阶段,主种群和副种群分别探索约束Pareto前沿(CPF)与无约束Pareto前沿(UPF),从而获取UPF和CPF的位置信息;在第二阶段,设计一种分类方法,根据UPF与CPF的位置对CMOP进行分类,从而对不同类型的CMOP执行特定的进化策略;此外,提出一种随机扰动策略,在副种群进化到CPF附近时,对它进行随机扰动以产生一些位于CPF上的个体,从而促进主种群在CPF上的收敛与分布。把所提算法与6个具有代表性的算法:CMOES(Constrained Multi-objective Optimization based on Even Search)、dp-ACS(dual-population evolutionary algorithm based on Adaptive Constraint Strength)、c-DPEA(DualPopulation based Evolutionary Algorithm for constrained multi-objective optimization)、CAEAD(Constrained Evolutionary Algorithm based on Alternative Evolution and Degeneration)、BiCo(evolutionary algorithm with Bidirectional Coevolution)和DDCMOEA(Dual-stage Dual-population Evolutionary Algorithm for Constrained Multiobjective Optimization)在LIRCMOP和DASCMOP两个测试集上进行实验比较。实验结果表明,DPDSEA在23个问题中取得了15个最优反转世代距离(IGD)值和12个最优超体积(HV)值,展现了DPDSEA在处理复杂CMOP时显著的性能优势。