针对光照强度不均匀造成光伏阵列的输出曲线为多峰曲线,传统最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制算法不能跟踪到全局最大功率的问题,文章提出一种基于改进麻雀搜索算法(Improved the Sparrow Search Algorithm,ISSA...针对光照强度不均匀造成光伏阵列的输出曲线为多峰曲线,传统最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制算法不能跟踪到全局最大功率的问题,文章提出一种基于改进麻雀搜索算法(Improved the Sparrow Search Algorithm,ISSA)和扰动观察法(Perturbation and Observation Method,P&O)的光储发电系统MPPT控制方法。首先,在跟踪前期,采用混沌映射方式增加ISSA种群多样性,提升算法广泛搜索能力。为了防止算法陷入局部最优,利用萤火虫扰动算法对麻雀个体进行扰动更新;其次,在跟踪后期,使用P&O防止系统在最大功率点附近振荡,保证最大功率点稳定输出;最后,经过算例分析,所提MPPT控制方法实现了不同场景下的快速跟踪、精准输出,能够很好应用地于光储混合发电系统中。展开更多
为了解决传统最大功率点跟踪(maximum power point tracking,MPPT)控制算法在局部遮荫环境中易陷入局部最优的问题,以及智能优化算法寻优速度慢的问题,提出了一种基于自适应扰动观察(IP&O)和改进麻雀搜索算法(sparrow search algori...为了解决传统最大功率点跟踪(maximum power point tracking,MPPT)控制算法在局部遮荫环境中易陷入局部最优的问题,以及智能优化算法寻优速度慢的问题,提出了一种基于自适应扰动观察(IP&O)和改进麻雀搜索算法(sparrow search algorithm,SSA)的复合IP&O-SSA。该算法对SSA加入了Tent序列初始化,对预警者加入了Levy飞行策略,再对P&O进行了自适应和滤波处理。该算法采用双层控制结构,先通过改进后的SSA进行全局搜索到最大功率点附近,再通过改进后的IP&O进行小步平缓搜索到跟踪最大功率点。通过在Simulink仿真标准环境、局部遮荫、环境突变3种情形,仿真结果表明:在标准环境下,该算法最先跟踪到最大功率点,收敛时间比改进前的扰动观察(P&O)和SSA缩短了3 ms、16 ms,跟踪效率高达99.99%;局部遮荫条件下,只有P&O会陷入局部最优,无法有效跟踪到系统的最大功率点,相较于改进前的SSA,该文算法的平均收敛时间缩短了8 ms,同时跟踪效率高达99.68%,提升了0.09%。验证了该算法适用于日常大部分应用情景,为提升光伏阵列的发电效率提供了理论控制算法基础,为之后的光伏阵列并网减少了不必要的功率损耗。展开更多
文摘针对光照强度不均匀造成光伏阵列的输出曲线为多峰曲线,传统最大功率点跟踪(Maximum Power Point Tracking,MPPT)控制算法不能跟踪到全局最大功率的问题,文章提出一种基于改进麻雀搜索算法(Improved the Sparrow Search Algorithm,ISSA)和扰动观察法(Perturbation and Observation Method,P&O)的光储发电系统MPPT控制方法。首先,在跟踪前期,采用混沌映射方式增加ISSA种群多样性,提升算法广泛搜索能力。为了防止算法陷入局部最优,利用萤火虫扰动算法对麻雀个体进行扰动更新;其次,在跟踪后期,使用P&O防止系统在最大功率点附近振荡,保证最大功率点稳定输出;最后,经过算例分析,所提MPPT控制方法实现了不同场景下的快速跟踪、精准输出,能够很好应用地于光储混合发电系统中。
文摘为了解决传统最大功率点跟踪(maximum power point tracking,MPPT)控制算法在局部遮荫环境中易陷入局部最优的问题,以及智能优化算法寻优速度慢的问题,提出了一种基于自适应扰动观察(IP&O)和改进麻雀搜索算法(sparrow search algorithm,SSA)的复合IP&O-SSA。该算法对SSA加入了Tent序列初始化,对预警者加入了Levy飞行策略,再对P&O进行了自适应和滤波处理。该算法采用双层控制结构,先通过改进后的SSA进行全局搜索到最大功率点附近,再通过改进后的IP&O进行小步平缓搜索到跟踪最大功率点。通过在Simulink仿真标准环境、局部遮荫、环境突变3种情形,仿真结果表明:在标准环境下,该算法最先跟踪到最大功率点,收敛时间比改进前的扰动观察(P&O)和SSA缩短了3 ms、16 ms,跟踪效率高达99.99%;局部遮荫条件下,只有P&O会陷入局部最优,无法有效跟踪到系统的最大功率点,相较于改进前的SSA,该文算法的平均收敛时间缩短了8 ms,同时跟踪效率高达99.68%,提升了0.09%。验证了该算法适用于日常大部分应用情景,为提升光伏阵列的发电效率提供了理论控制算法基础,为之后的光伏阵列并网减少了不必要的功率损耗。