期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Evacuation of pedestrians from a hall by game strategy update 被引量:2
1
作者 王浩楠 陈栋 +2 位作者 盘薇 薛郁 何红弟 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期302-309,共8页
In this paper, a cellular automaton model considering game strategy update is proposed to study the pedestrian evac- uation in a hall. Pedestrians are classified into two categories, i.e., cooperators and defectors, a... In this paper, a cellular automaton model considering game strategy update is proposed to study the pedestrian evac- uation in a hall. Pedestrians are classified into two categories, i.e., cooperators and defectors, and they walk to an exit according to their own strategy change. The conflicts that two or three pedestrians try to occupy the same site at the same time are investigated in the Game theory model. Based on it, the relationship between the pedestrian flow rate and the evacuation time as well as the variation of cooperative proportion against evacuation time is investigated from the different initial cooperative proportions under the influence of noise. The critical value of the noise is found when there is a small number of defectors in the initial time. Moreover, the influences of the initial cooperative proportion and strength of noise on evacuation are discussed. The results show that the lower the initial cooperative proportion as well as the bigger the strength of noise, the longer the time it takes for evacuation. 展开更多
关键词 PEDESTRIAN EVACUATION GAME strategy
在线阅读 下载PDF
Simulation-based optimization of inner layout of a theater considering the effect of pedestrians
2
作者 Qing-Fei Gao Yi-Zhou Tao +2 位作者 Yan-Fang Wei Cheng Wu Li-Yun Dong 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第3期285-291,共7页
We propose an extended cellular automaton model based on the floor field. The floor field can be changed accordingly in the presence of pedestrians. Furthermore, the effects of pedestrians with different speeds are di... We propose an extended cellular automaton model based on the floor field. The floor field can be changed accordingly in the presence of pedestrians. Furthermore, the effects of pedestrians with different speeds are distinguished, i.e., still pedestrians result in more increment of the floor field than moving ones. The improved floor field reflects impact of pedestrians as movable obstacles on evacuation process. The presented model was calibrated by comparing with previous studies. It is shown that this model provides a better description of crowd evacuation both qualitatively and quantitatively.Then we investigated crowd evacuation from a middle-size theater. Four possible designs of aisles in the theater are studied and one of them is the actual design in reality. Numerical simulation shows that the actual design of the theater is reasonable.Then we optimize the position of the side exit in order to reduce the evacuation time. It is shown that the utilization of the two exits at bottom is less than that of the side exits. When the position of the side exit is shifted upwards by about 1.6 m,it is found that the evacuation time reaches its minimum. 展开更多
关键词 cellular AUTOMATON floor field crowd EVACUATION optimization of PEDESTRIAN facilities
在线阅读 下载PDF
Estimation of Probability of Swarming Pedestrians' Violation at Signalized Intersections in Developing Cities
3
作者 李迎峰 史忠科 周致纳 《Journal of Southwest Jiaotong University(English Edition)》 2009年第1期80-85,共6页
We made an on-site investigation about pedestrian violation of traffic signals at a signalized intersection in Xi'an, Shaanxi province, China. Based on it, we studied the impact of pedestrian's waiting time on viola... We made an on-site investigation about pedestrian violation of traffic signals at a signalized intersection in Xi'an, Shaanxi province, China. Based on it, we studied the impact of pedestrian's waiting time on violation decision and the impact of the number of pedestrians in colony on the probability of swarming pedestrians' violation. The result revealed that the probability of pedestrian violation rose with the waiting time for the pedestrians' green signal. Then we developed a Monte Carlo model for simulating mixed vehicles and pedestrians and used the on-site investigation data to validate the model. When traffic volume is fight, the error between the simulated values and the measured ones is 2.67%. When traffic volume is heavy, the error is 3.38%. 展开更多
关键词 Pedestrian violation Population effect Signalized intersection Developing cities Monte Carlo method
在线阅读 下载PDF
Pedestrian lane formation with following–overtaking model and measurement of system order
4
作者 李碧璐 李政 +1 位作者 周睿 申世飞 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期247-263,共17页
Pedestrian self-organizing movement plays a significant role in evacuation studies and architectural design.Lane formation,a typical self-organizing phenomenon,helps pedestrian system to become more orderly,the majori... Pedestrian self-organizing movement plays a significant role in evacuation studies and architectural design.Lane formation,a typical self-organizing phenomenon,helps pedestrian system to become more orderly,the majority of following behavior model and overtaking behavior model are imprecise and unrealistic compared with pedestrian movement in the real world.In this study,a pedestrian dynamic model considering detailed modelling of the following behavior and overtaking behavior is constructed,and a method of measuring the lane formation and pedestrian system order based on information entropy is proposed.Simulation and analysis demonstrate that the following and avoidance behaviors are important factors of lane formation.A high tendency of following results in good lane formation.Both non-selective following behavior and aggressive overtaking behavior cause the system order to decrease.The most orderly following strategy for a pedestrian is to overtake the former pedestrian whose speed is lower than approximately 70%of his own.The influence of the obstacle layout on pedestrian lane and egress efficiency is also studied with this model.The presence of a small obstacle does not obstruct the walking of pedestrians;in contrast,it may help to improve the egress efficiency by guiding the pedestrian flow and mitigating the reduction of pedestrian system orderliness. 展开更多
关键词 pedestrian movement lane formation information entropy order degree
在线阅读 下载PDF
Hybrid pedestrian positioning system using wearable inertial sensors and ultrasonic ranging
5
作者 Lin Qi Yu Liu +2 位作者 Chuanshun Gao Tao Feng Yue Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期327-338,共12页
Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional ... Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional PPS is limited by the cumulative error of inertial sensors,complex motion modes of pedestrians,and the low robustness of the multi-sensor collaboration structure.This paper presents a hybrid pedestrian positioning system using the combination of wearable inertial sensors and ultrasonic ranging(H-PPS).A robust two nodes integration structure is developed to adaptively combine the motion data acquired from the single waist-mounted and foot-mounted node,and enhanced by a novel ellipsoid constraint model.In addition,a deep-learning-based walking speed estimator is proposed by considering all the motion features provided by different nodes,which effectively reduces the cumulative error originating from inertial sensors.Finally,a comprehensive data and model dual-driven model is presented to effectively combine the motion data provided by different sensor nodes and walking speed estimator,and multi-level constraints are extracted to further improve the performance of the overall system.Experimental results indicate that the proposed H-PPS significantly improves the performance of the single PPS and outperforms existing algorithms in accuracy index under complex indoor scenarios. 展开更多
关键词 Pedestrian positioning system Wearable inertial sensors Ultrasonic ranging Deep-learning Data and model dual-driven
在线阅读 下载PDF
An extended social force model on unidirectional flow considering psychological and behavioral impacts of hazard source
6
作者 邓凯丰 李梦 +1 位作者 胡祥敏 陈涛 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期567-576,共10页
An accurate assessment of the evacuation efficiency in case of disasters is of vital importance to the safety design of buildings and street blocks.Hazard sources not only physically but psychologically affect the ped... An accurate assessment of the evacuation efficiency in case of disasters is of vital importance to the safety design of buildings and street blocks.Hazard sources not only physically but psychologically affect the pedestrians,which may further alter their behavioral patterns.This effect is especially significant in narrow spaces,such as corridors and alleys.This study aims to integrate a non-spreading hazard source into the social force model following the results from a previous experiment and simulation,and to simulate unidirectional pedestrian flows over various crowd densities and clarity–intensity properties of the hazard source.The integration include a virtual repulsion force from the hazard source and a decay on the social force term.The simulations reveal(i)that the hazard source creates virtual bottlenecks that suppress the flow,(ii)that the inter-pedestrian push forms a stabilisation phase on the flow-density curve within medium-to-high densities,and(iii)that the pedestrians are prone to a less orderly and stable pattern of movement in low clarity–intensity scenarios,possibly with lateral collisions passing the hazard source. 展开更多
关键词 EVACUATION social force model hazard source unidirectional pedestrian flow
在线阅读 下载PDF
Simulation based on a modified social force model for sensitivity to emergency signs in subway station 被引量:2
7
作者 蔡征宇 周汝 +2 位作者 崔银锴 王妍 蒋军成 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期175-183,共9页
The subway is the primary travel tool for urban residents in China. Due to the complex structure of the subway and high personnel density in rush hours, subway evacuation capacity is critical. The subway evacuation mo... The subway is the primary travel tool for urban residents in China. Due to the complex structure of the subway and high personnel density in rush hours, subway evacuation capacity is critical. The subway evacuation model is explored in this work by combining the improved social force model with the view radius using the Vicsek model. The pedestrians are divided into two categories based on different force models. The first category is sensitive pedestrians who have normal responses to emergency signs. The second category is insensitive pedestrians. By simulating different proportions of the insensitive pedestrians, we find that the escape time is directly proportional to the number of insensitive pedestrians and inversely proportional to the view radius. However, when the view radius is large enough, the escape time does not change significantly, and the evacuation of people in a small view radius environment tends to be integrated. With the improvement of view radius conditions, the escape time changes more obviously with the proportion of insensitive pedestrians. A new emergency sign layout is proposed, and the simulations show that the proposed layout can effectively reduce the escape time in a small view radius environment. However, the evacuation effect of the new escape sign layout on the large view radius environment is not apparent. In this case, the exit setting emerges as an additional factor affecting the escape time. 展开更多
关键词 modified social force model emergency evacuation insensitive pedestrians emergency signs layout
在线阅读 下载PDF
Multi-grid simulation of pedestrian counter flow with topological interaction 被引量:7
8
作者 马剑 宋卫国 廖光煊 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期586-594,共9页
We investigate the dynamics of pedestrian counter flow by using a multi-grid topological pedestrian counter flow model. In the model, each pedestrian occupies multi- rather than only one grid, and interacts with other... We investigate the dynamics of pedestrian counter flow by using a multi-grid topological pedestrian counter flow model. In the model, each pedestrian occupies multi- rather than only one grid, and interacts with others in the form of topological interaction, which means that a moving pedestrian interacts with a fixed number of those nearest neighbours coming from the opposite direction to determine his/her own moving direction. Thus the discretization of space and time are much finer, the decision making process of the pedestrian is more reliable, which all together makes the moving behaviour and boundary conditions much more realistic. When compared with field observations, it can be found that the modified model is able to reproduce well fitted pedestrian collective behaviour such as dynamical variation of lane formation, clustering of pedestrians in the same direction, etc. The fundamental diagram produced by the model fits also well with field data in thc frce flow region. Further analyses indicate that with the increase of the size of pedestrian counter flow system, it becomes harder for the system to transit into a jamming state, while the increase of interaction range does not change the transition point from free flow to jamming flow in the multi-grid topological counter flow model. It is also found that the asymmetry of the injection rate of pedestrians on the boundaries has direct influence on the process of transition from free flow to jamming flow, i.e., a symmetric injection makes it easier for the system to transit into jamming flow. 展开更多
关键词 pedestrian dynamics topological interaction multi-grid model lane formation
在线阅读 下载PDF
Simulation of pedestrian evacuation based on an improved dynamic parameter model 被引量:4
9
作者 朱诺 贾斌 +1 位作者 邵春福 岳昊 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期66-75,共10页
An improved dynamic parameter model is presented based on cellular automata.The dynamic parameters,including direction parameter,empty parameter,and cognition parameter,are formulated to simplify tactically the proces... An improved dynamic parameter model is presented based on cellular automata.The dynamic parameters,including direction parameter,empty parameter,and cognition parameter,are formulated to simplify tactically the process of making decisions for pedestrians.The improved model reflects the judgement of pedestrians on surrounding conditions and the action of choosing or decision.According to the two-dimensional cellular automaton Moore neighborhood we establish the pedestrian moving rule,and carry out corresponding simulations of pedestrian evacuation.The improved model considers the impact of pedestrian density near exits on the evacuation process.Simulated and experimental results demonstrate that the improvement makes sense due to the fact that except for the spatial distance to exits,people also choose an exit according to the pedestrian density around exits.The impact factors 伪,尾,and 纬 are introduced to describe transition payoff,and their optimal values are determined through simulation.Moreover,the effects of pedestrian distribution,pedestrian density,and the width of exits on the evacuation time are discussed.The optimal exit layout,i.e.,the optimal position and width,is offered.The comparison between the simulated results obtained with the improved model and that from a previous model and experiments indicates that the improved model can reproduce experimental results well.Thus,it has great significance for further study,and important instructional meaning for pedestrian evacuation so as to reduce the number of casualties. 展开更多
关键词 cellular automata pedestrian evacuation dynamic parameter evacuation time
在线阅读 下载PDF
Cellular automaton modeling of pedestrian movement behavior on an escalator 被引量:4
10
作者 Fu-Rong Yue Juan Chen +2 位作者 Jian Ma Wei-Guo Song Siu-Ming Lo 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第12期328-333,共6页
As a convenient passenger transit facility between floors with different heights, escalators have been extensively used in shopping malls, metro stations, airport terminals, etc. Compared with other vertical transit f... As a convenient passenger transit facility between floors with different heights, escalators have been extensively used in shopping malls, metro stations, airport terminals, etc. Compared with other vertical transit facilities including stairs and elevators, escalators usually have large transit capacity. It is expected to reduce pedestrian traveling time and thus improve the quality of pedestrian’s experiences especially in jamming conditions. However, it is noticed that pedestrians may present different movement patterns, e.g., queuing on each step of the escalator, walking on the left-side and meanwhile standing on the right-side of the escalator. These different patterns affect the actual escalator traffic volume and finally the passenger spatiotemporal distribution in different built environments. Thus, in the present study, a microscopic cellular automaton(CA) simulation model considering pedestrian movement behavior on escalators is built. Simulations are performed considering different pedestrian movement speeds, queuing modes, and segregation on escalators with different escalator speeds.The actual escalator capacities under different pedestrian movement patterns are investigated. It is found that walking on escalators will not always benefit escalator transit volume improvement, especially in jamming conditions. 展开更多
关键词 cellular automaton pedestrian movement escalator capacity
在线阅读 下载PDF
Simulation study on cooperation behaviors and crowd dynamics in pedestrian evacuation 被引量:3
11
作者 Ya-Ping Ma Hui Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第3期488-495,共8页
Pedestrian evacuation is actually a process of behavioral evolution. Interaction behaviors between pedestrians affect not only the evolution of their cooperation strategy, but also their evacuation paths-scheduling an... Pedestrian evacuation is actually a process of behavioral evolution. Interaction behaviors between pedestrians affect not only the evolution of their cooperation strategy, but also their evacuation paths-scheduling and dynamics features. The existence of interaction behaviors and cooperation evolution is therefore critical for pedestrian evacuation. To address this issue, an extended cellular automaton(CA) evacuation model considering the effects of interaction behaviors and cooperation evolution is proposed here. The influence mechanism of the environment factor and interaction behaviors between neighbors on the decision-making of one pedestrian to path scheduling is focused. Average payoffs interacting with neighbors are used to represent the competitive ability of one pedestrian, aiming to solve the conflicts when more than one pedestrian competes for the same position based on a new method. Influences of interaction behaviors, the panic degree and the conflict cost on the evacuation dynamics and cooperation evolution of pedestrians are discussed. Simulation results of the room evacuation show that the interaction behaviors between pedestrians to a certain extent are beneficial to the evacuation efficiency and the formation of cooperation behaviors as well. The increase of conflict cost prolongs the evacuation time. Panic emotions of pedestrians are bad for cooperation behaviors of the crowd and have complex effects on evacuation time. A new self-organization effect is also presented. 展开更多
关键词 PEDESTRIAN EVACUATION EVACUATION TIME INTERACTION BEHAVIORS COOPERATION
在线阅读 下载PDF
Exit selection strategy in pedestrian evacuation simulation with multi-exits 被引量:4
12
作者 岳昊 张滨雅 +1 位作者 邵春福 邢燕 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第5期195-207,共13页
A mixed strategy of the exit selection in a pedestrian evacuation simulation with multi-exits is constructed by fusing the distance-based and time-based strategies through a cognitive coefficient, in order to reduce t... A mixed strategy of the exit selection in a pedestrian evacuation simulation with multi-exits is constructed by fusing the distance-based and time-based strategies through a cognitive coefficient, in order to reduce the evacuation imbalance caused by the asymmetry of exits or pedestrian layout, to find a critical density to distinguish whether the strategy of exit selection takes effect or not, and to analyze the exit selection results with different cognitive coefficients. The strategy of exit selection is embedded in the computation of the shortest estimated distance in a dynamic parameter model, in which the concept of a jam area layer and the procedure of step-by-step expending are introduced. Simulation results indicate the characteristics of evacuation time gradually varying against cognitive coefficient and the effectiveness of reducing evacuation imbalance caused by the asymmetry of pedestrian or exit layout. It is found that there is a critical density to distinguish whether a pedestrian jam occurs in the evacuation and whether an exit selection strategy is in effect. It is also shown that the strategy of exit selection has no effect on the evacuation process in the no-effect phase with a low density, and that evacuation time and exit selection are dependent on the cognitive coefficient and pedestrian initial density in the in-effect phase with a high density. 展开更多
关键词 pedestrian evacuation exit selection strategy critical density dynamic parameters
在线阅读 下载PDF
Modeling walking behavior of pedestrian groups with floor field cellular automaton approach 被引量:4
13
作者 陆丽丽 任刚 +1 位作者 王炜 王义 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期654-660,共7页
Walking in groups is very common in a realistic walking environment. An extended floor field cellular automaton (CA) model is therefore proposed to describe the walking behavior of pedestrian groups, This model repr... Walking in groups is very common in a realistic walking environment. An extended floor field cellular automaton (CA) model is therefore proposed to describe the walking behavior of pedestrian groups, This model represents the motion of pedestrian groups in a realistic way. The simulation results reveal that the walking behavior of groups has an important but negative influence on pedestrian flow dynamics, especially when the density is at a high level. The presence of pedestrian groups retards the emergence of lane formation and increases the instability of operation of pedestrian flow. Moreover, the average velocity and volume of pedestrian flow are significantly reduced due to the group motion. Meanwhile, the parameter-sensitive analysis suggests that pedestrian groups should make a compromise between efficient movement and staying coherent with a certain spatial structure when walking in a dense crowd. 展开更多
关键词 pedestrian groups floor field CA model leader-follower pattern simulation
在线阅读 下载PDF
A new collision avoidance model for pedestrian dynamics 被引量:3
14
作者 王千龄 陈姚 +2 位作者 董海荣 周敏 宁滨 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第3期453-462,共10页
The pedestrians can only avoid collisions passively under the action of forces during simulations using the social force model, which may lead to unnatural behaviors. This paper proposes an optimization-based model fo... The pedestrians can only avoid collisions passively under the action of forces during simulations using the social force model, which may lead to unnatural behaviors. This paper proposes an optimization-based model for the avoidance of collisions, where the social repulsive force is removed in favor of a search for the quickest path to destination in the pedestrian's vision field. In this way, the behaviors of pedestrians are governed by changing their desired walking direction and desired speed. By combining the critical factors of pedestrian movement, such as positions of the exit and obstacles and velocities of the neighbors, the choice of desired velocity has been rendered to a discrete optimization problem. Therefore,it is the self-driven force that leads pedestrians to a free path rather than the repulsive force, which means the pedestrians can actively avoid collisions. The new model is verified by comparing with the fundamental diagram and actual data. The simulation results of individual avoidance trajectories and crowd avoidance behaviors demonstrate the reasonability of the proposed model. 展开更多
关键词 pedestrian dynamics social force model collision avoidance optimization-based method
在线阅读 下载PDF
A REACTIVE DYNAMIC CONTINUUM USER EQUILIBRIUM MODEL FOR BI-DIRECTIONAL PEDESTRIAN FLOWS 被引量:3
15
作者 Yanqun Jiang Tao Xiong +4 位作者 S.C. Wong Chi-Wang Shu Mengping Zhang Peng Zhang William H.K. Lam 《Acta Mathematica Scientia》 SCIE CSCD 2009年第6期1541-1555,共15页
In this paper, a reactive dynamic user equilibrium model is extended to simulate two groups of pedestrians traveling on crossing paths in a continuous walking facility. Each group makes path choices to minimize the tr... In this paper, a reactive dynamic user equilibrium model is extended to simulate two groups of pedestrians traveling on crossing paths in a continuous walking facility. Each group makes path choices to minimize the travel cost to its destination in a reactive manner based on instantaneous information. The model consists of a conservation law equation coupled with an Eikonal-type equation for each group. The velocity-density relationship of pedestrian movement is obtained via an experimental method. The model is solved using a finite volume method for the conservation law equation and a fast-marching method for the Eikonal-type equation on unstructured grids. The numerical results verify the rationality of the model and the validity of the numerical method. Based on this continuum model, a number of results, e.g., the formation of strips or moving clusters composed of pedestrians walking to the same destination, are also observed. 展开更多
关键词 pedestrian flows conservation law Eikonal-type equation density-velocity relationship finite volume method fast marching method unstructured grids
在线阅读 下载PDF
Pedestrian evacuation at the subway station under fire 被引量:2
16
作者 杨晓霞 董海荣 +1 位作者 姚秀明 孙绪彬 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第4期486-494,共9页
With the development of urban rail transit, ensuring the safe evacuation of pedestrians at subway stations has become an important issue in the case of an emergency such as a fire. This paper chooses the platform of l... With the development of urban rail transit, ensuring the safe evacuation of pedestrians at subway stations has become an important issue in the case of an emergency such as a fire. This paper chooses the platform of line 4 at the Beijing Xu- anwumen subway station to study the emergency evacuation process under fire. Based on the established platform, effects of the fire dynamics, different initial pedestrian densities, and positions of fire on evacuation are investigated. According to simulation results, it is found that the fire increases the air temperature and the smoke density, and decreases pedestrians'- visibility and walking velocity. Also, there is a critical initial density at the platform if achieving a safe evacuation within the required 6 minutes. Furthermore, different positions of fire set in this paper have little difference on crowd evacuation if the fire is not large enough. The suggestions provided in this paper are helpful for the subway operators to prevent major casualties. 展开更多
关键词 pedestrian evacuation FDS Evac subway station FIRE social force model
在线阅读 下载PDF
Pedestrian evacuation simulation in multi-exit case:An emotion and group dual-driven method 被引量:2
17
作者 李永行 杨晓霞 +2 位作者 孟梦 顾欣 孔令鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期762-769,共8页
This paper analyzes the characteristics of emotion state and group behavior in the evacuation process.During the emergency evacuation,emotion state and group behavior are interacting with each other,and indivisible.Th... This paper analyzes the characteristics of emotion state and group behavior in the evacuation process.During the emergency evacuation,emotion state and group behavior are interacting with each other,and indivisible.The emotion spread model with the effect of group behavior,and the leader-follower model with the effect of emotion state are proposed.On this basis,exit choice strategies with the effect of emotion state and group behavior are proposed.Fusing emotion spread model,leader-follower model,and exit choice strategies into a cellular automata(CA)-based pedestrian simulation model,we simulate the evacuation process in a multi-exit case.Simulation results indicate that panic emotion and group behavior are two negative influence factors for pedestrian evacuation.Compared with panic emotion or group behavior only,pedestrian evacuation efficiency with the effects of both is lower. 展开更多
关键词 pedestrian evacuation emotion state group behavior multi-exit case cellular automata
在线阅读 下载PDF
Effect of a static pedestrian as an exit obstacle on evacuation 被引量:2
18
作者 胡杨慧 毕钰帛 +3 位作者 张俊 练丽萍 宋卫国 高伟 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期615-625,共11页
Building exit as a bottleneck structure is the last and the most congested stage in building evacuation.It is well known that obstacles at the exit affect the evacuation process,but few researchers pay attention to th... Building exit as a bottleneck structure is the last and the most congested stage in building evacuation.It is well known that obstacles at the exit affect the evacuation process,but few researchers pay attention to the effect of stationary pedestrians(the elderly with slow speed,the injured,and the static evacuation guide)as obstacles at the exit on the evacuation process.This paper explores the influence of the presence of a stationary pedestrian as an obstacle at the exit on the evacuation from experiments and simulations.We use a software,Pathfinder,based on the agent-based model to study the effect of ratios of exit width(D)to distance(d)between the static pedestrian and the exit,the asymmetric structure by shifting the static pedestrian upward,and types of obstacles on evacuation.Results show that the evacuation time of scenes with a static pedestrian is longer than that of scenes with an obstacle due to the unexpected hindering effect of the static pedestrian.Different ratios of D/d have different effects on evacuation efficiency.Among the five D/d ratios in this paper,the evacuation efficiency is the largest when d is equal to 0.75D,and the existence of the static pedestrian has a positive impact on evacuation in this condition.The influence of the asymmetric structure of the static pedestrian on evacuation efficiency is affected by D/d.This study can provide a theoretical basis for crowd management and evacuation plan near the exit of complex buildings and facilities. 展开更多
关键词 EVACUATION exit obstacle static pedestrian pathfinder simulation
在线阅读 下载PDF
Experimental study on age and gender differences in microscopic movement characteristics of students 被引量:2
19
作者 Jiayue Wang Maik Boltes +3 位作者 Armin Seyfried Antoine Tordeux Jun Zhang Wenguo Weng 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第9期633-642,共10页
Campus security has aroused many concerns from the whole society.Stampede is one of the most frequent and influential accidents in campus.Studies on pedestrian dynamics especially focusing on students are essential fo... Campus security has aroused many concerns from the whole society.Stampede is one of the most frequent and influential accidents in campus.Studies on pedestrian dynamics especially focusing on students are essential for campus security,which are helpful to improve facility design and emergency evacuation strategy.In this paper,primary and middle school students were recruited to participate in the single-file experiments.The microscopic movement characteristics,including walking speed,headway,gait characteristics(step length,step frequency and swaying amplitude)and their relations were investigated.Age and gender differences in the headway-speed diagram and space requirements were analyzed by statistical tests.The results indicated that the impacts of age and gender were significant.There were three stages for the influence of gender on the headway-speed diagram for both age groups.The impacts on students'space requirements were consistent for different age and gender groups.But the impacts of age and gender on free-flow speed were affected by each other.Due to the connection of walking speed and gait characteristics,the comparisons of gait characteristics between different ages and genders were performed to understand the corresponding differences in speed more deeply.The results showed that differences in step length and swaying amplitude between males and females were significant for both age groups.The effect of gender on step frequency was significant for primary students.But for middle school students,whether gender had significant impact on step frequency was not clear here because of the large P-value.Besides,the influence of age on gait characteristics changed with gender. 展开更多
关键词 campus security microscopic movement characteristics pedestrian dynamics single-file movement experiments
在线阅读 下载PDF
Analysis of interrelationship between pedestrian flow parameters using artificial neural network 被引量:2
20
作者 Pritikana Das M.Parida V.K.Katiyar 《Journal of Modern Transportation》 2015年第4期298-309,共12页
Pedestrian flow parameters are analysed in this study considering linear and non-linear relationships between stream flow parameters using conventional and soft computing approach. Speed-density relationship serves as... Pedestrian flow parameters are analysed in this study considering linear and non-linear relationships between stream flow parameters using conventional and soft computing approach. Speed-density relationship serves as a fundamental relationship, Single-regime con- cepts and deterministic models like Greenshield and Underwood were applied in the study to describe bidirec- tional flow characteristics on sidewalks and carriageways around transport terminals in India. Artificial Neural Net- work (ANN) approach is also used for traffic flow mod- elling to build a relationship between different pedestrian flow parameters. A non-linear model based on ANN is suggested and compared with the other deterministic models. Out of the aforesaid models, ANN model demonstrated good results based on accuracy measure- ment. Also these ANN models have an advantage in terms of their self-processing and intelligent behaviour. Flow parameters are estimated by ANN model using MFD (Macroscopic Fundamental Diagram). Estimated mean absolute error (MAE) and root mean square error (RMSE)values for the best fitted ANN model are 3.83 and 4.73 m/ min, respectively, less than those for the other models for sidewalk movement. Further estimated MAE and RMSE values of ANN model for carriageway movement are 4.02 and 4.98 m/min, respectively, which are comparatively less than those of the other models. ANN model gives better performance in fitness of model and future prediction of flow parameters. Also when using linear regression model between observed and estimated values for speed and flow parameters, performance of ANN model gives better fitness to predict data as compared to deterministic model. R value for speed data prediction is 0.756 and for flow data pre- diction is 0.997 using ANN model at sidewalk movement around transport terminal. 展开更多
关键词 ANN Pedestrian flow modelling Macroscopic flow diagram MAE RMSE
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部