The problem of delay-dependent passive control of a class of linear systems with nonlinear perturbation and time-varying delay in states is studied. The main idea aims at designing a state-feedback controller such tha...The problem of delay-dependent passive control of a class of linear systems with nonlinear perturbation and time-varying delay in states is studied. The main idea aims at designing a state-feedback controller such that for a time-varying delay in states, the linear system with nonlinear perturbation remains robustly stable and passive. In the system, the delay is time-varying. And the derivation of delay has the maximum and minimum value. The time-varying nonlinear perturbation is allowed to be norm-bounded. Using the effective linear matrix inequality methodology, the sufficient condition is primarily obtained for the system to have robust stability and passivity. Subsequently the existent condition of a state feedback controller is given, and the explicit expression of the controller is obtained by means of the solution of linear matrix inequalities (LMIs). In the end, a numerical example is given to demonstrate the validity and applicability of the proposed approach.展开更多
The performance-based passive control analysis of the Maxwell dampers between one 10-story and one 6-story adjacent RC frames is conducted in this work.Not only the optimal parameters but also the optimal arrangements...The performance-based passive control analysis of the Maxwell dampers between one 10-story and one 6-story adjacent RC frames is conducted in this work.Not only the optimal parameters but also the optimal arrangements of the Maxwell dampers are proposed based on the optimal target of making the total exceeding probability of the adjacent structures to be minimal.The applicability of the analytical expressions of the Maxwell damper damping parameters under different seismic performance targets are firstly examined and then the preferable damping parameters of the Maxwell dampers are proposed through the extensive parametric studies.Furthermore,the optimal arranging positions and optimal arranging numbers of the Maxwell dampers between the adjacent buildings are derived based on a large number of seismic fragility analyses,as well.The general arranging laws of the Maxwell dampers between the adjacent buildings are generated based on the discussion of the theoretical method through the simplified plane model.The optimal parameters and optimal arrangement of the Maxwell dampers presented make both the adjacent structures have preferable controlled effects under each seismic performance target which can satisfy the requirements of multi-performance seismic resistance of the modern seismic codes.展开更多
The robust passivity control problem is addressed for a class of uncertain delayed systems with timevarying delay. The parameter uncertainties are norm-bounded. First, the delay-dependent stability sufficient conditio...The robust passivity control problem is addressed for a class of uncertain delayed systems with timevarying delay. The parameter uncertainties are norm-bounded. First, the delay-dependent stability sufficient condition is obtained for the nominal system, and then, based-on the former, the delay-dependent robust passivity criteria is provided and the corresponding controller is designed in terms of linear matrix inequalities. Finally, a numerical example is given to demonstrate the validity of the proposed approach.展开更多
基金the National Natural Science Foundation of China (60674026 60574051).
文摘The problem of delay-dependent passive control of a class of linear systems with nonlinear perturbation and time-varying delay in states is studied. The main idea aims at designing a state-feedback controller such that for a time-varying delay in states, the linear system with nonlinear perturbation remains robustly stable and passive. In the system, the delay is time-varying. And the derivation of delay has the maximum and minimum value. The time-varying nonlinear perturbation is allowed to be norm-bounded. Using the effective linear matrix inequality methodology, the sufficient condition is primarily obtained for the system to have robust stability and passivity. Subsequently the existent condition of a state feedback controller is given, and the explicit expression of the controller is obtained by means of the solution of linear matrix inequalities (LMIs). In the end, a numerical example is given to demonstrate the validity and applicability of the proposed approach.
基金Projects(51408443,51178203)supported by the National Natural Science Foundation of ChinaProject(K201511)supported by the Science Foundation of Wuhan Institute of Technology,China
文摘The performance-based passive control analysis of the Maxwell dampers between one 10-story and one 6-story adjacent RC frames is conducted in this work.Not only the optimal parameters but also the optimal arrangements of the Maxwell dampers are proposed based on the optimal target of making the total exceeding probability of the adjacent structures to be minimal.The applicability of the analytical expressions of the Maxwell damper damping parameters under different seismic performance targets are firstly examined and then the preferable damping parameters of the Maxwell dampers are proposed through the extensive parametric studies.Furthermore,the optimal arranging positions and optimal arranging numbers of the Maxwell dampers between the adjacent buildings are derived based on a large number of seismic fragility analyses,as well.The general arranging laws of the Maxwell dampers between the adjacent buildings are generated based on the discussion of the theoretical method through the simplified plane model.The optimal parameters and optimal arrangement of the Maxwell dampers presented make both the adjacent structures have preferable controlled effects under each seismic performance target which can satisfy the requirements of multi-performance seismic resistance of the modern seismic codes.
文摘The robust passivity control problem is addressed for a class of uncertain delayed systems with timevarying delay. The parameter uncertainties are norm-bounded. First, the delay-dependent stability sufficient condition is obtained for the nominal system, and then, based-on the former, the delay-dependent robust passivity criteria is provided and the corresponding controller is designed in terms of linear matrix inequalities. Finally, a numerical example is given to demonstrate the validity of the proposed approach.