期刊文献+
共找到2,724篇文章
< 1 2 137 >
每页显示 20 50 100
Support vector machine forecasting method improved by chaotic particle swarm optimization and its application 被引量:11
1
作者 李彦斌 张宁 李存斌 《Journal of Central South University》 SCIE EI CAS 2009年第3期478-481,共4页
By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) for... By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects. 展开更多
关键词 chaotic searching particle swarm optimization (PSO) support vector machine (SVM) short term load forecast
在线阅读 下载PDF
A new support vector machine optimized by improved particle swarm optimization and its application 被引量:3
2
作者 李翔 杨尚东 乞建勋 《Journal of Central South University of Technology》 EI 2006年第5期568-572,共5页
A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, ... A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM. 展开更多
关键词 support vector machine particle swarm optimization algorithm short-term load forecasting simulated annealing
在线阅读 下载PDF
Recognition model and algorithm of projectiles by combining particle swarm optimization support vector and spatial-temporal constrain 被引量:1
3
作者 Han-shan Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期273-283,共11页
In order to improve the recognition rate and accuracy rate of projectiles in six sky-screens intersection test system,this work proposes a new recognition method of projectiles by combining particle swarm optimization... In order to improve the recognition rate and accuracy rate of projectiles in six sky-screens intersection test system,this work proposes a new recognition method of projectiles by combining particle swarm optimization support vector and spatial-temporal constrain of six sky-screens detection sensor.Based on the measurement principle of the six sky-screens intersection test system and the characteristics of the output signal of the sky-screen,we analyze the existing problems regarding the recognition of projectiles.In order to optimize the projectile recognition effect,we use the support vector machine and basic particle swarm algorithm to form a new recognition algorithm.We set up the particle swarm algorithm optimization support vector projectile information recognition model that conforms to the six sky-screens intersection test system.We also construct a spatial-temporal constrain matching model based on the spatial geometric relationship of six sky-screen intersection,and form a new projectile signal recognition algorithm with six sky-screens spatial-temporal information constraints under the signal classification mechanism of particle swarm optimization algorithm support vector machine.Based on experiments,we obtain the optimal penalty and kernel function radius parameters in the PSO-SVM algorithm;we adjust the parameters of the support vector machine model,train the test signal data of every sky-screen,and gain the projectile signal classification results.Afterwards,according to the signal classification results,we calculate the coordinate parameters of the real projectile by using the spatial-temporal constrain of six sky-screens detection sensor,which verifies the feasibility of the proposed algorithm. 展开更多
关键词 Six sky-screens intersection test system Pattern recognition particle swarm optimization support vector machine PROJECTILE
在线阅读 下载PDF
Parameter selection of support vector machine for function approximation based on chaos optimization 被引量:18
4
作者 Yuan Xiaofang Wang Yaonan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期191-197,共7页
The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results... The support vector machine (SVM) is a novel machine learning method, which has the ability to approximate nonlinear functions with arbitrary accuracy. Setting parameters well is very crucial for SVM learning results and generalization ability, and now there is no systematic, general method for parameter selection. In this article, the SVM parameter selection for function approximation is regarded as a compound optimization problem and a mutative scale chaos optimization algorithm is employed to search for optimal paraxneter values. The chaos optimization algorithm is an effective way for global optimal and the mutative scale chaos algorithm could improve the search efficiency and accuracy. Several simulation examples show the sensitivity of the SVM parameters and demonstrate the superiority of this proposed method for nonlinear function approximation. 展开更多
关键词 learning systems support vector machines (SVM) approximation theory parameter selection optimization.
在线阅读 下载PDF
Improved particle swarm optimization algorithm for fuzzy multi-class SVM 被引量:18
5
作者 Ying Li Bendu Bai Yanning Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期509-513,共5页
An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from its... An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training. 展开更多
关键词 particle swarm optimization(PSO) fuzzy support vector machine(FSVM) adaptive mutation multi-classification.
在线阅读 下载PDF
Particle swarm optimization based RVM classifier for non-linear circuit fault diagnosis 被引量:5
6
作者 高成 黄姣英 +1 位作者 孙悦 刁胜龙 《Journal of Central South University》 SCIE EI CAS 2012年第2期459-464,共6页
A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessi... A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessing technique based on the kurtosis and entropy of signals were used. Firstly, sinusoidal inputs with different frequencies were applied to the circuit under test (CUT). Then, the resulting frequency responses were sampled to generate features. The frequency response was sampled to compute its kurtosis and entropy, which can show the information capacity of signal. By analyzing the output signals, the proposed method can detect and identify faulty components in circuits. The results indicate that the fault classes can be classified correctly for at least 99% of the test data in example circuit. And the proposed method can diagnose hard and soft faults. 展开更多
关键词 non-linear circuits fault diagnosis relevance vector machine particle swarm optimization KURTOSIS ENTROPY
在线阅读 下载PDF
Support vector machine based nonlinear model multi-step-ahead optimizing predictive control 被引量:9
7
作者 钟伟民 皮道映 孙优贤 《Journal of Central South University of Technology》 EI 2005年第5期591-595,共5页
A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established... A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection. 展开更多
关键词 nonlinear model predictive control support vector machine nonlinear system identification kernel function nonlinear optimization
在线阅读 下载PDF
An Improved Particle Swarm Optimization Algorithm Based on Ensemble Technique
8
作者 施彦 黄聪明 《Defence Technology(防务技术)》 SCIE EI CAS 2006年第4期310-314,共5页
An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), whic... An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), which is used to replace the global best position (gbest). It is compared with the standard PSO algorithm invented by Kennedy and Eberhart and some improved PSO algorithms based on three different benchmark functions. The simulation results show that the improved PSO based on ensemble technique can get better solutions than the standard PSO and some other improved algorithms under all test cases. 展开更多
关键词 机器学习 进化计算 粒子群优化算法 系综技术
在线阅读 下载PDF
New approach to training support vector machine 被引量:10
9
作者 Tang Faming Chen Mianyun Wang Zhongdong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期200-205,219,共7页
Support vector machine has become an increasingly popular tool for machine learning tasks involving classification, regression or novelty detection. Training a support vector machine requires the solution of a very la... Support vector machine has become an increasingly popular tool for machine learning tasks involving classification, regression or novelty detection. Training a support vector machine requires the solution of a very large quadratic programming problem. Traditional optimization methods cannot be directly applied due to memory restrictions. Up to now, several approaches exist for circumventing the above shortcomings and work well. Another learning algorithm, particle swarm optimization, for training SVM is introduted. The method is tested on UCI datasets. 展开更多
关键词 support vector machine quadratic programming problem particle swarm optimization.
在线阅读 下载PDF
Adjustable entropy function method for support vector machine 被引量:4
10
作者 Wu Qing Liu Sanyang Zhang Leyou 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期1029-1034,共6页
Based on KKT complementary condition in optimization theory, an unconstrained non-differential optimization model for support vector machine is proposed. An adjustable entropy function method is given to deal with the... Based on KKT complementary condition in optimization theory, an unconstrained non-differential optimization model for support vector machine is proposed. An adjustable entropy function method is given to deal with the proposed optimization problem and the Newton algorithm is used to figure out the optimal solution. The proposed method can find an optimal solution with a relatively small parameter p, which avoids the numerical overflow in the traditional entropy function methods. It is a new approach to solve support vector machine. The theoretical analysis and experimental results illustrate the feasibility and efficiency of the proposed algorithm. 展开更多
关键词 optimization support vector machine adjustable entropy function Newton algorithm.
在线阅读 下载PDF
Fault diagnosis model based on multi-manifold learning and PSO-SVM for machinery 被引量:6
11
作者 Wang Hongjun Xu Xiaoli Rosen B G 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第S2期210-214,共5页
Fault diagnosis technology plays an important role in the industries due to the emergency fault of a machine could bring the heavy lost for the people and the company. A fault diagnosis model based on multi-manifold l... Fault diagnosis technology plays an important role in the industries due to the emergency fault of a machine could bring the heavy lost for the people and the company. A fault diagnosis model based on multi-manifold learning and particle swarm optimization support vector machine(PSO-SVM) is studied. This fault diagnosis model is used for a rolling bearing experimental of three kinds faults. The results are verified that this model based on multi-manifold learning and PSO-SVM is good at the fault sensitive features acquisition with effective accuracy. 展开更多
关键词 FAULT diagnosis multi-manifold learning particle swarm optimization support vector machine
在线阅读 下载PDF
Data mining optimization of laidback fan-shaped hole to improve film cooling performance 被引量:2
12
作者 WANG Chun-hua ZHANG Jing-zhou ZHOU Jun-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1183-1189,共7页
To improve the cooling performance, shape optimization of a laidback fan-shaped film cooling hole was performed. Three geometric parameters, including hole length, lateral expansion angle and forward expansion angle, ... To improve the cooling performance, shape optimization of a laidback fan-shaped film cooling hole was performed. Three geometric parameters, including hole length, lateral expansion angle and forward expansion angle, were selected as the design parameters. Numerical model of the film cooling system was established, validated, and used to generate 32 groups of training samples. Least square support vector machine(LS-SVM) was applied for surrogate model, and the optimal design parameters were determined by a kind of chaotic optimization algorithm. As hole length, lateral expansion angle and forward expansion angle are 90 mm, 20° and 5°, the area-averaged film cooling effectiveness can reach its maximum value in the design space. LS-SVM coupled with chaotic optimization algorithm is a promising scheme for the optimization of shaped film cooling holes. 展开更多
关键词 gas TURBINE laidback fan-shaped film COOLING HOLES optimization support vector machine (SVM) CHAOTIC optimization algorithm
在线阅读 下载PDF
RandWPSO-LSSVM optimization feedback method for large underground cavern and its engineering applications 被引量:2
13
作者 聂卫平 徐卫亚 刘兴宁 《Journal of Central South University》 SCIE EI CAS 2012年第8期2354-2364,共11页
According to the characteristics of large underground caverns, by using the safety factor of surrounding rock mass point as the control standard of cavern stability, RandWPSO-LSSVM optimization feedback method and flo... According to the characteristics of large underground caverns, by using the safety factor of surrounding rock mass point as the control standard of cavern stability, RandWPSO-LSSVM optimization feedback method and flow process of large underground cavern anchor parameters were established. By applying the optimization feedback method to actual project, the best anchor parameters of large surge shaft five-tunnel area underground cavern of the Nuozhadu hydropower station were obtained through optimization. The results show that the predicted effect of LSSVM prediction model obtained through RandWPSO optimization is good, reasonable and reliable. Combination of the best anchor parameters obtained is 114131312, that is, the locked anchor bar spacing is 1 m x 1 m, pre-stress is 100 kN, elevation 580.45-586.50 m section anchor bar diameter is 36.00 mm, length is 4.50 m, spacing is 1.5 m × 2.5 m; anchor bar diameter at the five-tunnel area side wall is 25.00 mm, length is 7.50 m, spacing is 1 m× 1.5 m, and the shotcrete thickness is 0.15 m. The feedback analyses show that the optimization feedback method of large underground cavern anchor parameters is reasonable and reliable, which has important guiding significance for ensuring the stability of large underground caverns and for saving project investment. 展开更多
关键词 random weight particle swarm optimization least squares support vector machine large undergrotmd cavern anchor oarameters optimization feedback rock-ooint safety factor
在线阅读 下载PDF
Solving large-scale multiclass learning problems via an efficient support vector classifier 被引量:1
14
作者 Zheng Shuibo Tang Houjun +1 位作者 Han Zhengzhi Zhang Haoran 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第4期910-915,共6页
Support vector machines (SVMs) are initially designed for binary classification. How to effectively extend them for multiclass classification is still an ongoing research topic. A multiclass classifier is constructe... Support vector machines (SVMs) are initially designed for binary classification. How to effectively extend them for multiclass classification is still an ongoing research topic. A multiclass classifier is constructed by combining SVM^light algorithm with directed acyclic graph SVM (DAGSVM) method, named DAGSVM^light A new method is proposed to select the working set which is identical to the working set selected by SVM^light approach. Experimental results indicate DAGSVM^light is competitive with DAGSMO. It is more suitable for practice use. It may be an especially useful tool for large-scale multiclass classification problems and lead to more widespread use of SVMs in the engineering community due to its good performance. 展开更多
关键词 support vector machines (SVMs) multiclass classification decomposition method SVM^light sequential minimal optimization (SMO).
在线阅读 下载PDF
Transient reliability optimization for turbine disk radial deformation
15
作者 费成巍 白广忱 +2 位作者 唐文忠 蔡逸思 高海峰 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期344-352,共9页
The radial deformation design of turbine disk seriously influences the control of gas turbine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). To improve the design of BTRRC under continuous opera... The radial deformation design of turbine disk seriously influences the control of gas turbine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). To improve the design of BTRRC under continuous operation, the nonlinear dynamic reliability optimization of disk radial deformation was implemented based on extremum response surface method(ERSM), including ERSM-based quadratic function(QF-ERSM) and ERSM-based support vector machine of regression(SR-ERSM). The mathematical models of the two methods were established and the framework of reliability-based dynamic design optimization was developed. The numerical experiments demonstrate that the proposed optimization methods have the promising potential in reducing additional design samples and improving computational efficiency with acceptable precision, in which the SR-ERSM emerges more obviously. Through the case study, we find that disk radial deformation is reduced by about 6.5×10–5 m; δ=1.31×10–3 m is optimal for turbine disk radial deformation design and the proposed methods are verified again. The presented efforts provide an effective optimization method for the nonlinear transient design of motion structures for further research, and enrich mechanical reliability design theory. 展开更多
关键词 turbine disk radial deformation reliability-based transient design optimization extremum response surface method support vector machine regression
在线阅读 下载PDF
基于特征筛选和粒子群优化的花生生物量估算 被引量:2
16
作者 刘涛 杨奉源 +4 位作者 刘望 张寰 殷冬梅 张全国 焦有宙 《农业工程学报》 北大核心 2025年第1期238-247,共10页
为解决花生植株生物量估算精度低、破坏性大等问题,该研究提出一种无人机低空遥感技术结合高光谱特征筛选的花生生物量估算方法。通过无人机搭载高光谱成像仪,获取田块尺度多个花生品种的高光谱影像数据,首先对获取的影像进行拼接、辐... 为解决花生植株生物量估算精度低、破坏性大等问题,该研究提出一种无人机低空遥感技术结合高光谱特征筛选的花生生物量估算方法。通过无人机搭载高光谱成像仪,获取田块尺度多个花生品种的高光谱影像数据,首先对获取的影像进行拼接、辐射定标、大气校正等预处理,提取出地面采样点位置的光谱反射率,计算光谱反射率的一阶微分和植被指数,使用变量投影重要性(variable importance in projection,VIP)方法对光谱反射率、一阶微分和植被指数等三种数据进行特征筛选,利用筛选后的特征和地面实测数据构建支持向量机回归(support vector regression,SVR)、反向传播神经网络回归(back propagation neural network,BPNN)和随机森林回归(random forest regression,RFR)模型,并使用粒子群优化算法(particle swarm optimization,PSO)进行模型优化。结果表明:相比原始光谱反射率和植被指数,一阶微分光谱反射率与花生生物量具有较好的相关性;使用一阶微分光谱反射率与植被指数组合的RF回归模型精度最高(决定系数R^(2)为0.754,均方根误差RMSE为0.085 kg/m^(2)),使用粒子群优化后的PSO-RF模型可进一步提高模型精度(R^(2)为0.80,RMSE为0.076 kg/m^(2))。该研究为花生生物量精准估算提供了有效的方法,为智慧乡村建设中的精细化农田管理提供技术支持。 展开更多
关键词 花生 生物量 智慧乡村 特征筛选 机器学习 粒子群优化
在线阅读 下载PDF
融合改进卷积神经网络和层次SVM的鸡蛋外观检测 被引量:1
17
作者 姚万鹏 张凌晓 +1 位作者 赵肖峰 王飞成 《食品与机械》 北大核心 2025年第1期158-164,共7页
[目的]实现鸡蛋精细化分类和提高鸡蛋外观检测的准确率。[方法]提出一种融合改进卷积神经网络和层次SVM的鸡蛋外观检测方案。(1)采用鸡蛋机器视觉图像采集设备获取不同方位、不同外观鸡蛋图像,并运用图像增强技术扩充鸡蛋图像数据库。(2... [目的]实现鸡蛋精细化分类和提高鸡蛋外观检测的准确率。[方法]提出一种融合改进卷积神经网络和层次SVM的鸡蛋外观检测方案。(1)采用鸡蛋机器视觉图像采集设备获取不同方位、不同外观鸡蛋图像,并运用图像增强技术扩充鸡蛋图像数据库。(2)设计改进的浣熊优化算法(coati optimization algorithm,COA)和FCM聚类算法,在此基础上对卷积神经网络(convolutional neural network,CNN)模型结构和超参数进行优化,以提升CNN泛化能力。运用优化后的CNN深度学习鸡蛋图像数据库,从而实现鸡蛋外观图像特征的有效提取。(3)建立层次支持向量机鸡蛋外观分类工具,最终实现对鸡蛋外观的准确检测分类。[结果]所提鸡蛋外观检测方案的检测准确率提高了1.74%~4.31%,检测时间降低了21.68%~53.51%。[结论]所提方法能够有效实现对鸡蛋的在线实时精细化分类。 展开更多
关键词 鸡蛋外观 卷积神经网络 浣熊优化算法 支持向量机 特征提取
在线阅读 下载PDF
改进PSO-PH-RRT^(*)算法在智能车路径规划中的应用 被引量:1
18
作者 蒋启龙 许健 《东北大学学报(自然科学版)》 北大核心 2025年第3期12-19,共8页
在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(... 在机器人控制、智能车自主导航等应用场景中,路径规划需要考虑到环境中的障碍物、地形等因素.针对路径规划中快速拓展随机树(RRT)算法拓展目标方向盲目、效率较低的问题,提出了基于粒子群算法优化的均匀概率快速拓展随机树(PSO-PH-RRT^(*))算法.该算法在基于均匀概率的快速拓展随机树(PHRRT^(*))算法的基础上,利用粒子群算法更新方向概率作为随机树节点的速度方向,从而改善了节点的位置更新策略,并将节点到目标向量的距离和轨迹平滑度作为粒子群算法的适应度函数.最后在多种障碍环境下进行仿真.结果表明,PSO-PH-RRT^(*)算法能大大减少迭代时间成本,同时改善路径长度和平滑度. 展开更多
关键词 路径规划 RRT算法 改进粒子群优化算法 目标向量 代价函数 适应度函数
在线阅读 下载PDF
基于PSO−SVR的掘进工作面风温预测
19
作者 李延河 万志军 +6 位作者 于振子 苟红 赵万里 周嘉乐 师鹏 甄正 张源 《煤炭科学技术》 北大核心 2025年第1期183-191,共9页
随着我国浅部煤炭资源的逐渐枯竭,矿井开采深度日益增大,热害问题也随之加剧。采掘作业空间是井下的主要热害场所,对其进行热害防治是矿井安全高效生产的重要基础。矿井热害治理的前提是明确其冷负荷,因此对采掘作业空间风温进行精准预... 随着我国浅部煤炭资源的逐渐枯竭,矿井开采深度日益增大,热害问题也随之加剧。采掘作业空间是井下的主要热害场所,对其进行热害防治是矿井安全高效生产的重要基础。矿井热害治理的前提是明确其冷负荷,因此对采掘作业空间风温进行精准预测意义重大。建立了基于PSO-SVR(基于粒子群的支持向量回归)的掘进工作面风温预测模型,利用模型中的惩罚因子C和核函数参数g对模型进行了寻优。通过现场实测及文献调研,建立了掘进工作面风温预测训练样本集。通过与最小二乘法估计MLR模型和经“试错法”标定参数的常规SVR模型进行对比,分析了PSO-SVR算法的优势。将PSO-SVR算法模型应用于平煤十矿己-24120保护层风巷风温预测,并依据风温预测结果,指导了制冷机组的选型和降温方案设计。结果表明:PSO-SVR模型预测性能最优,模型绝对误差百分比仅为1.85%,较常规SVR模型减小了55.9%,可见PSO优化模型参数对于提高SVR拟合度、泛化性及预测精度具有重要作用。巷道每掘进100m,工作面风流平均温升0.16℃,掘进至2000m时巷道迎头风温升至35.8℃。己-24120保护层风巷需冷量为1083.28kW,设计制冷机组总制冷量为1085 kW。己-24120保护层风巷实施降温后,工作面平均温降8.6℃,降温效果显著,表明了PSO-SVR掘进工作面风温预测模型的可靠性和可行性。 展开更多
关键词 掘进工作面 风温预测 粒子群 支持向量回归 矿井降温
在线阅读 下载PDF
粒子群算法与有限元融合驱动的薄壁复合材料构件支撑布局优化
20
作者 王福吉 何青松 +3 位作者 付饶 邓俊 林永权 马兴 《航空制造技术》 北大核心 2025年第6期40-47,共8页
薄壁复合材料构件的支撑布局设计是抑制其加工振动及变形的重要方法,但多数支撑布局的优化过程中只考虑单一的振动或变形,并且忽略了吸盘吸附对工件的影响,与实际工况有较大偏差。本文提出一种粒子群算法和有限元融合驱动的薄壁构件支... 薄壁复合材料构件的支撑布局设计是抑制其加工振动及变形的重要方法,但多数支撑布局的优化过程中只考虑单一的振动或变形,并且忽略了吸盘吸附对工件的影响,与实际工况有较大偏差。本文提出一种粒子群算法和有限元融合驱动的薄壁构件支撑布局优化方法,综合考虑了工件吸附变形、支撑后工件固有频率与刀具激励频率有效分离、额外辅助支撑等因素,能够在保证最大变形量满足要求的前提下实现支撑点数量及位置的优化。首先逐次在最大变形处增加支撑点直至满足变形要求,再在易产生共振的固有频率所对应振型的最大振幅处增加支撑点,直到满足频率要求,然后利用优化算法找到最小支撑点数量并进行最小支撑点数量下的支撑布局优化,最后开发了基于Abaqus和粒子群算法的支撑布局优化模块,进行了构件优化计算和试验验证。结果表明,该方法能够在保证频率及变形要求的前提下,有效减少支撑点数量。 展开更多
关键词 薄壁构件 支撑布局优化 有限元 粒子群算法 变形
在线阅读 下载PDF
上一页 1 2 137 下一页 到第
使用帮助 返回顶部