期刊文献+
共找到185篇文章
< 1 2 10 >
每页显示 20 50 100
Momentum particle swarm optimizer
1
作者 Liu Yu Qin Zheng +1 位作者 Wang Xianghua He Xingshi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期941-946,共6页
The previous particle swarm optimizers lack direct mechanism to prevent particles beyond predefined search space, which results in invalid solutions in some special cases. A momentum factor is introduced into the orig... The previous particle swarm optimizers lack direct mechanism to prevent particles beyond predefined search space, which results in invalid solutions in some special cases. A momentum factor is introduced into the original particle swarm optimizer to resolve this problem. Furthermore, in order to accelerate convergence, a new strategy about updating velocities is given. The resulting approach is mromentum-PSO which guarantees that particles are never beyond predefined search space without checking boundary in every iteration. In addition, linearly decreasing wight PSO (LDW-PSO) equipped with a boundary checking strategy is also discussed, which is denoted as LDWBC-PSO. LDW-PSO, LDWBC-PSO and momentum-PSO are compared in optimization on five test functions. The experimental results show that in some special cases LDW-PSO finds invalid solutions and LDWBC-PSO has poor performance, while momentum-PSO not only exhibits good performance but also reduces computational cost for updating velocities. 展开更多
关键词 evolutionary computation particle swarm optimization optimization algorithm.
在线阅读 下载PDF
基于层级分解的前围声学包多目标优化 被引量:1
2
作者 杨帅 吴宪 薛顺达 《振动与冲击》 北大核心 2025年第3期267-277,共11页
搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变... 搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变量范围,以PBNR(power based noise reduction)均值作为约束,以质量和成本作为优化目标,采用非支配排序遗传算法(nondominated sorting genetic algorithm II,NSGA-II)进行多目标优化,得到Pareto多目标解集。并从中选取满足设计目标的最佳组合方案(材料组合、覆盖率、前围过孔密封方案选型)。结果显示,该模型最终的优化结果与实测结果接近,误差分别为0.35%,1.47%,1.82%,相较于初始声学包方案,优化后的结果显示,PBNR均值提升3.05%,其质量降低52.38%,成本降低15.15%,验证了所提方法的有效性和准确性。 展开更多
关键词 GAPSO-RBFNN 声学包 PBNR NSGA-II Pareto多目标解集
在线阅读 下载PDF
基于改进灰狼算法求解武器目标分配问题
3
作者 陈阳 李姜 +2 位作者 王烨 高远 郭立红 《兵器装备工程学报》 北大核心 2025年第6期227-233,共7页
针对群智能优化算法求解武器目标分配问题搜索效率低的现状,提出了一种改进的灰狼优化算法。不同于传统的灰狼优化算法,该研究创新性地借鉴了遗传算法的思想,在灰狼优化过程中引入了交叉算子,这一改进不仅增加了种群内部的信息共享机会... 针对群智能优化算法求解武器目标分配问题搜索效率低的现状,提出了一种改进的灰狼优化算法。不同于传统的灰狼优化算法,该研究创新性地借鉴了遗传算法的思想,在灰狼优化过程中引入了交叉算子,这一改进不仅增加了种群内部的信息共享机会,还有效提升了算法的全局探索能力,使得算法能够在更大范围内寻找最优解,避免陷入局部最优的问题。仿真结果表明,在目标数量与武器数量均为20的测试组中,改进后的灰狼优化算法相较于标准的粒子群优化算法(PSO)和传统的灰狼优化算法(GWO),取得了更为优异的成绩,改进算法的适应度中位数相对于PSO和GWO分别下降了11.57%和6.37%。改进灰狼优化算法显著提升了GWO算法的全局寻优能力,且能够有效解决WTA问题。 展开更多
关键词 武器目标分配问题 群智能优化 灰狼优化算法 粒子群算法 进化计算
在线阅读 下载PDF
考虑碳排放的铁路路基施工机群配置优化 被引量:1
4
作者 鲍学英 申中帅 +1 位作者 李子龙 吕向茹 《安全与环境学报》 北大核心 2025年第1期364-373,共10页
铁路路基施工机群配置关系施工工期,会直接产生施工成本,对生态环境造成重要影响,进而产生较高碳排放量。首先,考虑铁路路基施工工期、施工成本、施工绿色指数及碳排放等目标,建立铁路路基施工机群配置优化模型。其中,将施工机群配置优... 铁路路基施工机群配置关系施工工期,会直接产生施工成本,对生态环境造成重要影响,进而产生较高碳排放量。首先,考虑铁路路基施工工期、施工成本、施工绿色指数及碳排放等目标,建立铁路路基施工机群配置优化模型。其中,将施工机群配置优化模型中各优化目标作为一级指标建立机群配置多目标决策偏好评价指标体系,并将组合数有序加权算子(Combination Ordered Weighted Averaging,C-OWA)法与基于指标间相关性分析的权重确定(Criteria Importance Though Intercriteria Correlation,CRITIC)法结合对指标进行组合赋权。其次,采用基于莱维飞行机制的量子粒子群优化(Quantum Particle Swarm Optimization,QPSO)算法求解该施工机群配置优化模型。最后,以某铁路路基工程某标段为例进行实证分析。结果显示,多目标优化方案较原方案工期提前75 d,成本降低203.257万元,绿色指数提升5.250%,碳排放量降低1.305 t。研究结果可为铁路路基施工机群配置优化提供新思路。 展开更多
关键词 环境工程学 铁路路基机群配置 碳排放 组合数有序加权算子法 基于指标间相关性分析的权重确定法 基于莱维飞行的量子粒子群优化算法
在线阅读 下载PDF
油田卸水机械臂的设计及其液压控制系统的优化 被引量:3
5
作者 罗明 周建平 +1 位作者 周忠祥 许燕 《机床与液压》 北大核心 2025年第1期194-201,共8页
为了解决新疆部分地区采用水罐车向油田井口卸水时面临的人员占用较多和效率低的问题,设计一种油田卸水机械臂,以实现水罐车的自动卸水工作。对该机械臂进行结构设计,并优化其液压系统。在AMESim和Simulink中建立控制系统的仿真模型,并... 为了解决新疆部分地区采用水罐车向油田井口卸水时面临的人员占用较多和效率低的问题,设计一种油田卸水机械臂,以实现水罐车的自动卸水工作。对该机械臂进行结构设计,并优化其液压系统。在AMESim和Simulink中建立控制系统的仿真模型,并提出一种基于粒子群优化(PSO)算法的模糊PID控制策略。该控制策略引入非线性递减权重,对粒子群算法进行改进,采用改进后的PSO对量化因子和比例因子进行更新迭代,实现对模糊PID参数的优化。采用阶跃信号和正弦信号作为激励,通过上升时间、超调量和平均误差等指标来评价该算法的控制效果。最后,制作油田卸水机械臂样机和控制系统进行性能测试。实验结果表明:使用基于PSO的模糊PID控制时,机械臂调整迅速、运动平稳且定位准确度高,能够满足油田卸水的使用需求。 展开更多
关键词 油田卸水机械臂 液压系统 基于PSO的模糊PID 改进粒子群优化算法
在线阅读 下载PDF
基于三种群粒子群优化策略的移动机器人路径规划 被引量:1
6
作者 王珂 姜春艳 +1 位作者 黄黎 张新海 《深圳大学学报(理工版)》 北大核心 2025年第4期447-454,I0006-I0008,共11页
针对移动机器人在复杂环境路径规划中存在的全局搜索能力不足、易陷入局部最优及路径质量欠佳等问题,提出一种基于三种群粒子群优化(three-population particle swarm optimization,TPPSO)策略的移动机器人路径规划算法.该算法通过探索... 针对移动机器人在复杂环境路径规划中存在的全局搜索能力不足、易陷入局部最优及路径质量欠佳等问题,提出一种基于三种群粒子群优化(three-population particle swarm optimization,TPPSO)策略的移动机器人路径规划算法.该算法通过探索群、开发群和增强群的协同进化机制,增强了全局搜索与局部开发能力.探索群利用粒子质量评估和随机选择策略更新速度;开发群采用线性认知系数动态调整机制;增强群引入较大随机分量以减少局部最优影响.算法引入随机扰动策略,当搜索性能停滞时对粒子群施加扰动,以增强多样性.在单峰函数(F_(1))、带噪声单峰函数(F_(4))和多峰函数(F_(9))3类基准函数测试中,TPPSO算法的平均值和标准差均优于传统PSO算法、SAVPSO算法和RRT*算法,验证了其优异的优化性能和稳定性.在4个10 m×10 m的二维标准环境中生成的路径能有效规避障碍物并减少不必要的迂回,路径质量最优.复杂环境验证实验进一步发现,在动态多障碍物环境中的规划成功率达91.5%;三维环境中的平均爬升率为10.7%.TPPSO算法能有效解决移动机器人在复杂环境下的路径规划问题. 展开更多
关键词 计算机应用 路径规划 粒子群优化 进化算法 线性认知系数 随机扰动
在线阅读 下载PDF
IIoT环境下基于聚类的工作流多雾协同调度算法 被引量:2
7
作者 吴宏伟 江凌云 陈海峰 《计算机工程与设计》 北大核心 2025年第1期52-59,共8页
为解决在IIoT(industrial internet of things)环境下,现有的调度算法调度工作流中通信频繁、数据传输量大的任务所带来的完工时间上升、成本增加等影响的问题,提出一种基于聚类的工作流多雾协同调度算法。通过二分K均值算法对工作流中... 为解决在IIoT(industrial internet of things)环境下,现有的调度算法调度工作流中通信频繁、数据传输量大的任务所带来的完工时间上升、成本增加等影响的问题,提出一种基于聚类的工作流多雾协同调度算法。通过二分K均值算法对工作流中的任务进行聚类,基于聚类结果,在多个雾服务器之间使用改进的免疫粒子群优化算法进行任务调度。实验结果表明,该算法相比其它一些传统的调度算法在完工时间、成本、负载均衡方面都有一定提升。 展开更多
关键词 工业物联网 聚类 工作流 二分K均值算法 多雾 免疫粒子群优化算法 调度算法
在线阅读 下载PDF
基于环境识别策略的多目标自适应粒子群 算法及应用
8
作者 武保同 舒若琦 陈志祥 《计算机应用研究》 北大核心 2025年第10期2980-2988,共9页
针对标准的多目标粒子群算法在寻优过程中易出现局部最优、收敛速度过快和精度较低等问题,提出了一种基于环境识别的多目标自适应粒子群算法。利用佳点集策略生成初始种群,使个体均匀分布在解空间内;采用非线性惯性权重机制和交叉变异策... 针对标准的多目标粒子群算法在寻优过程中易出现局部最优、收敛速度过快和精度较低等问题,提出了一种基于环境识别的多目标自适应粒子群算法。利用佳点集策略生成初始种群,使个体均匀分布在解空间内;采用非线性惯性权重机制和交叉变异策略,避免算法在搜索过程中过快收敛;提出基于环境识别的自适应学习算子和自适应跳跃协作算子,分别通过自识别解空间内种群多样性程度和粒子小生境内拥挤度信息实现粒子间信息的交互和学习。通过多组基准函数的仿真实验进行比较,结果表明算法的搜索能力和优化精度都得到明显改善。最后,通过一个带有NP-hard性质的实际多阶段生产案例验证了算法的实用性。 展开更多
关键词 粒子群算法 进化计算 自适应学习 多目标优化 多阶段生产问题
在线阅读 下载PDF
应用多策略改进量子粒子群算法的直流电与Rayleigh波联合反演
9
作者 朱春光 管泓清 +3 位作者 秦天 张富翔 王强 高远 《石油地球物理勘探》 北大核心 2025年第1期137-151,共15页
针对浅地表地质分层问题,文中分析了直流电(DC)法与Rayleigh波(RW)法共同探测并进行数据联合反演的可行性,重点研究了融合多种优化策略后形成的基于重心反向学习(Centroid Opposition-Based Learning,COBL)和混沌搜索(Chaos Search,CS)... 针对浅地表地质分层问题,文中分析了直流电(DC)法与Rayleigh波(RW)法共同探测并进行数据联合反演的可行性,重点研究了融合多种优化策略后形成的基于重心反向学习(Centroid Opposition-Based Learning,COBL)和混沌搜索(Chaos Search,CS)的量子行为粒子群(Quantum-behaved Particle Swarm Optimization,QPSO)算法(简称为COBL-CS-QPSO算法)应用于二者的一维联合反演。通过联合反演可以从电阻率数据中提取层厚信息,弥补单独Rayleigh波反演难以精确解析层厚的问题;同时多策略算法的引入使解在搜索过程中不易陷入局部最优,并加强了不确定环境下的随机搜索效率。理论模型实验考虑了无噪声与有噪声以及已知模型层数与未知模型层数的多种情况,并使模型反演在宽泛的搜索区间内进行,最终取得了良好的反演效果。随后将该联合反演算法应用于实际数据,结果表明基于COBL-CS-QPSO算法的直流电与Rayleigh波联合反演在无钻孔信息或未知地下详细分层的条件下,能够获得相比于单独方法更为准确的结果。同时与自适应粒子群(APSO)算法的对比也体现了改进算法的反演优势。 展开更多
关键词 Rayleigh 波法 直流电法 联合反演 量子行为粒子群算法 重心反向学习 混沌搜索 无限折叠的迭代混 沌映射 浅地表
在线阅读 下载PDF
基于聚类模型的C-RAN组网规划方法研究
10
作者 李恒毅 杨国 +1 位作者 魏波 陈虹君 《计算机科学》 北大核心 2025年第S1期832-835,共4页
随着5G通信网络的快速部署,其在信息化社会建设中的重要性日益凸显。5G异构化网络技术和集中式C-RAN组网方式的应用,虽然带来了高效的小区边缘协同处理和成本节约,但也引发了前传网络体量过大和传输线路建设成本增加的问题。为解决这一... 随着5G通信网络的快速部署,其在信息化社会建设中的重要性日益凸显。5G异构化网络技术和集中式C-RAN组网方式的应用,虽然带来了高效的小区边缘协同处理和成本节约,但也引发了前传网络体量过大和传输线路建设成本增加的问题。为解决这一问题,提出一种基于聚类算法和启发式算法的基站工程规划方法,对C-RAN基站的最佳部署位置进行研究。该方法通过构建K-means聚类模型,以基站与AAU/RRU间的欧氏距离作为约束,寻求最优的基站部署位置。在仿真与结果分析中结合手肘法判断最优聚类K值。以此为依据确定的C-RAN站点位置部署较为合理,能够保证连接到每一个无线收发点,并且消耗的光缆成本最低。此方法具有较好的可推广性,能够为未来的移动通信网络规划和建设提供有益的参考。 展开更多
关键词 C-RAN组网 基站规划 K-MEANS聚类 手肘法 粒子群优化算法
在线阅读 下载PDF
机会维修策略下的核动力装置系统维修决策模型
11
作者 吴帅帅 王航 刘永阔 《哈尔滨工程大学学报》 北大核心 2025年第11期2278-2286,共9页
针对船舶核动力装置现行“定期-事后”复合维修模式导致的资源利用率低、可靠度不足等问题,本文提出一种基于多目标优化的预防性维修决策方法。通过构建融合安全性与可靠度的多维评估体系,量化关键设备劣化状态,并引入机会维修策略,将... 针对船舶核动力装置现行“定期-事后”复合维修模式导致的资源利用率低、可靠度不足等问题,本文提出一种基于多目标优化的预防性维修决策方法。通过构建融合安全性与可靠度的多维评估体系,量化关键设备劣化状态,并引入机会维修策略,将其作为子系统维修契机。在此基础上,建立以最小维修成本和最大系统可靠度为目标、以总维修时间为约束的维修决策模型,并通过引入变异操作改进粒子群算法实现高效求解。案例验证了模型的有效性,结果表明该方法可实现维修策略在经济性、可靠度之间的最优平衡。 展开更多
关键词 预测性维护 剩余使用寿命预测 选择性维修 不完全维修 机会维修策略 威布尔分布 多目标优化 粒子群算法
在线阅读 下载PDF
基于差分进化粒子群混合算法的多无人机协同区域搜索策略 被引量:7
12
作者 赖幸君 唐鑫 +2 位作者 林磊 王志胜 丛玉华 《弹箭与制导学报》 北大核心 2024年第1期89-97,共9页
为提高无人机群在未知环境中的区域搜索效率,提出一种多无人机协同区域搜索策略。首先,根据区域搜索任务需求,建立包含区域覆盖率、区域不确定度、目标存在概率三种属性的区域信息地图;其次,以最大化搜索效率、同时最小化无人机搜索过... 为提高无人机群在未知环境中的区域搜索效率,提出一种多无人机协同区域搜索策略。首先,根据区域搜索任务需求,建立包含区域覆盖率、区域不确定度、目标存在概率三种属性的区域信息地图;其次,以最大化搜索效率、同时最小化无人机搜索过程中的能耗为目标,建立无人机区域搜索滚动时域优化目标函数,指导无人机在线决策搜索路线;然后针对传统群智能优化算法易陷入局部最优的缺陷,设计差分进化粒子群混合算法在线求解该多目标优化问题,提高算法的寻优性能,从而提高无人机的搜索效率。最后,通过数值仿真实验,对所提算法进行验证,仿真结果表明,文中设计的基于差分进化粒子群混合算法的多无人机协同区域搜索策略与传统的群智能优化算法相比具有更高的区域搜索效率。 展开更多
关键词 多无人机 协同搜索 群智能算法 滚动时域优化 差分进化粒子群混合算法
在线阅读 下载PDF
自适应策略优化的粒子群优化算法在神经网络架构搜索中的应用 被引量:3
13
作者 程金芮 金瑾 +3 位作者 张朝龙 孔超 何嘉 张鑫 《计算机应用》 CSCD 北大核心 2024年第S01期60-64,共5页
针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与... 针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与局部信息的协同作用和智能切换学习策略。具体地,ARCLPSO利用全局和局部信息的协同作用令粒子向更优的方向移动,通过智能的切换粒子学习策略平衡粒子的搜索性能和收敛速度,提高搜索速度和搜索质量。在NAS-Bench-101数据集上的实验结果表明,ARCLPSO的收敛时间相较于传统进化算法(REA)和随机搜索(RS),分别减少了40.9%和55.2%。 展开更多
关键词 神经网络架构搜索 粒子群优化 进化算法 NAS-Bench-101 自适应的协作学习算法
在线阅读 下载PDF
基于WPSO-BP和L-MBWO的多翼离心风机优化研究 被引量:6
14
作者 徐韧 李君宇 +3 位作者 周明 刘林波 张志富 黄其柏 《机电工程》 CAS 北大核心 2024年第10期1833-1843,共11页
针对多翼离心风机气动性能、噪声情况难以同时改进的问题,提出了一种基于变权重粒子群优化算法的反向传播神经网络风机性能预测模型(WPSO-BP),以及一种基于逻辑混沌初始化的多目标白鲸优化算法(L-MBWO),并将二者应用于多翼离心风机的优... 针对多翼离心风机气动性能、噪声情况难以同时改进的问题,提出了一种基于变权重粒子群优化算法的反向传播神经网络风机性能预测模型(WPSO-BP),以及一种基于逻辑混沌初始化的多目标白鲸优化算法(L-MBWO),并将二者应用于多翼离心风机的优化设计中。首先,选取了叶片进出口角、倾斜蜗舌的最大蜗舌半径、叶片切除角度作为设计变量,把风机的全压、效率、声压级作为优化目标;然后,构建了WPSO-BP预测模型,以反映设计变量与优化目标之间的关系,定量分析对比了该模型与BP神经网络预测模型,预测值用于风机的性能优化;接着,将逻辑混沌初始化引入到白鲸优化算法(BWO),基于第三代非支配排序遗传算法(NSGA-Ⅲ)构建了L-MBWO优化算法;最后,在实验验证仿真可靠的前提下,将提出的预测模型和优化算法应用于风机优化,并对优化效果进行了综合分析。研究结果表明:优化后的风机全压增加了34.79 Pa,效率提高了0.67%,噪声降低了1.73 dB,实现了多个优化目标之间的平衡,有效改善了风机的综合性能,为多翼离心风机的优化设计提供了一种新思路。 展开更多
关键词 多翼离心风机 变权重 基于变权重粒子群优化算法的反向传播神经网络风机性能预测模型 白鲸优化算法 基于逻辑混沌初始化的多目标白鲸优化算法 预测模型 风机全压 风机效率 风机噪声
在线阅读 下载PDF
基于竞争式协同进化的混合变量粒子群优化算法 被引量:3
15
作者 张虎 张衡 +4 位作者 黄子路 王喆 付青坡 彭瑾 王峰 《系统仿真学报》 CAS CSCD 北大核心 2024年第4期844-858,共15页
现实工业生产应用中存在大量的混合变量优化问题,这类问题的决策变量既包含连续变量,又包含离散变量。由于决策变量为混合类型,导致问题的决策空间变得不规则,采用已有的方法很难进行有效求解。引入协同进化策略,提出一种基于竞争式协... 现实工业生产应用中存在大量的混合变量优化问题,这类问题的决策变量既包含连续变量,又包含离散变量。由于决策变量为混合类型,导致问题的决策空间变得不规则,采用已有的方法很难进行有效求解。引入协同进化策略,提出一种基于竞争式协同进化的混合变量粒子群优化算法(competitive coevolution based PSO,CCPSO)。设计基于容忍度的搜索方向调整机制来判断粒子的进化状态,从而自适应地调整粒子的搜索方向,避免陷入局部最优,平衡了种群的收敛性和多样性;引入基于竞争式协同进化的学习对象生成机制,在检测到粒子进化停滞时为每个粒子生成新的学习对象,从而推动粒子的进一步搜索,提高了种群的多样性;采用基于竞争学习的预测策略为粒子选择合适的学习对象,充分利用了新旧学习对象的学习潜力,保证了算法的收敛速度。实验结果表明:相比其他主流的混合变量优化算法,CCPSO可以获得更优的结果。 展开更多
关键词 混合变量优化 协同策略 进化算法 粒子群
在线阅读 下载PDF
计及不确定性的随机暂态稳定约束最优潮流 被引量:1
16
作者 刘颂凯 周倩 +3 位作者 杨超 阮肇华 张磊 袁铭洋 《电力系统及其自动化学报》 CSCD 北大核心 2024年第7期1-10,共10页
为应对电力系统中不确定性对系统安全稳定造成的显著影响,提出一种计及不确定性的随机暂态稳定约束最优潮流方法。首先,采用威布尔和正态分布分别描述风电和负荷两种不确定性变量。其次,设置相应的置信水平,基于机会约束理论建立相应的... 为应对电力系统中不确定性对系统安全稳定造成的显著影响,提出一种计及不确定性的随机暂态稳定约束最优潮流方法。首先,采用威布尔和正态分布分别描述风电和负荷两种不确定性变量。其次,设置相应的置信水平,基于机会约束理论建立相应的概率约束,以期望值形式表达目标函数,从而建立计及不确定性的随机暂态稳定约束最优潮流模型。然后,通过半不变量法和Gram-Charlier级数求取电力系统输出变量的累积分布函数,并利用改进量子粒子群算法进行求解。最后,算例分析验证了所提方法的优越性和有效性。 展开更多
关键词 不确定性 随机暂态稳定约束最优潮流 置信水平 半不变量法 量子粒子群优化算法
在线阅读 下载PDF
改进教与学算法的静压推力滑动轴承优化 被引量:1
17
作者 张凯 赵如杰 +1 位作者 张义民 艾巍 《机械设计与制造》 北大核心 2024年第4期56-59,共4页
为了使静压推力滑动轴承在运行过程中功率损失最小,提出了改进的教与学算法(DWTLBO),对静压推力滑动轴承进行优化设计。与其它经典的智能优化算法如粒子群算法(PSO)、差分进化算法(DE)和教与学算法(TLBO)相比,该算法在学习阶段引入差分... 为了使静压推力滑动轴承在运行过程中功率损失最小,提出了改进的教与学算法(DWTLBO),对静压推力滑动轴承进行优化设计。与其它经典的智能优化算法如粒子群算法(PSO)、差分进化算法(DE)和教与学算法(TLBO)相比,该算法在学习阶段引入差分进化算子增加了各组之间的交叉率,进一步提高算法的多样性和局部搜索能力,避免早熟收敛。通过建立推力轴承模型,设计了轴承阶梯半径,油槽凹口半径,润滑油粘度,润滑油流量四个设计变量,采用改进的教与学算法对模型的相关参数进行优化。优化结果表明,提出的改进算法与传统的教与学算法相比,获得模型的最优解更佳,有利于在以后的工程优化中提高模型的设计精度。 展开更多
关键词 静压推力滑动轴承 粒子群算法 教与学算法 差分进化算法
在线阅读 下载PDF
混合驱动的粒子群算法 被引量:10
18
作者 陈峰 丁泉 +3 位作者 吴乐 刘爱萍 陈勋 张云飞 《计算机工程与应用》 CSCD 北大核心 2024年第8期78-89,共12页
粒子群优化(particle swarm optimization,PSO)算法是一种在机器人运动规划、信号处理等领域有广泛应用的优化算法。然而该算法易陷入局部最优解,从而导致早熟问题。出现早熟问题的原因之一是粒子群仅依靠适应度值选择学习范例。为了克... 粒子群优化(particle swarm optimization,PSO)算法是一种在机器人运动规划、信号处理等领域有广泛应用的优化算法。然而该算法易陷入局部最优解,从而导致早熟问题。出现早熟问题的原因之一是粒子群仅依靠适应度值选择学习范例。为了克服上述问题,提出了一种基于适应度值、改进率和新颖性混合驱动的PSO算法(particle swarm optimization algorithm based on hybrid driven by fitness values,improvement rate,and novelty,FINPSO)。在该算法中,引入的新指标和遗传算法会平衡种群的探索与开发,降低粒子群早熟的可能性。适应度值、改进率和新颖性会作为粒子的评价指标。各指标独立地选择学习范例并保存到不同的档案中。粒子每一次速度更新都要确定各个指标的权重,并从每个档案中选择一个范例学习。该算法采用了遗传算法进行粒子间的信息交流。遗传算法中的交叉互换和突变会给种群带来更多的随机性,提升种群的全局搜索能力。以八个PSO算法变体作为对比算法,两个CEC测试套件作为基准函数进行实验。实验结果表明,FINPSO算法优于已有的PSO算法变体达到最先进水平。 展开更多
关键词 粒子群优化 遗传算法 混合驱动 全局优化算法 进化算法
在线阅读 下载PDF
风-光-储和需求响应协同的虚拟电厂日前经济调度优化 被引量:13
19
作者 苟凯杰 吕鸣阳 +3 位作者 高悦 陈衡 张国强 雷兢 《广东电力》 北大核心 2024年第2期18-24,共7页
目前可再生能源直接并入电网仍然面临稳定性和经济性问题,经过虚拟电厂整合可以缓解对电网的影响。以系统整合后最终运行成本达到最小作为目标,进行新能源出力和负荷在未来24 h的预测,计及电网侧在不同时间内的电价变化情况,采用反向学... 目前可再生能源直接并入电网仍然面临稳定性和经济性问题,经过虚拟电厂整合可以缓解对电网的影响。以系统整合后最终运行成本达到最小作为目标,进行新能源出力和负荷在未来24 h的预测,计及电网侧在不同时间内的电价变化情况,采用反向学习的混沌映射自适应粒子群算法对风-光-储能和需求响应不同组合搭配的5种调度方案进行探讨,与原始粒子群算法相比,所提算法可以跳出局部最优解而找到全局最优解。计算结果表明,风-光-储和需求响应都参与供电相比风-光-储供电可以将运行成本降低4.47%,用户舒适度提高3.51%。 展开更多
关键词 虚拟电厂 风-光-储 需求响应 经济调度 反向学习的混沌映射自适应粒子群算法
在线阅读 下载PDF
融合早熟检测机制和对立随机游走策略的粒子群优化算法 被引量:1
20
作者 陈健华 吴张倩 宋威 《计算机应用》 CSCD 北大核心 2024年第S2期123-128,共6页
针对现存粒子群优化(PSO)算法易早熟和收敛速度慢的问题,提出一种融合早熟检测机制和对立随机游走策略的粒子群优化算法(PDORW-PSO)。首先,通过引入平移参数的方法改进Sigmoid函数,以确保在自变量较小时,函数输出值也较小;其次,将全局... 针对现存粒子群优化(PSO)算法易早熟和收敛速度慢的问题,提出一种融合早熟检测机制和对立随机游走策略的粒子群优化算法(PDORW-PSO)。首先,通过引入平移参数的方法改进Sigmoid函数,以确保在自变量较小时,函数输出值也较小;其次,将全局极值连续未变的次数作为改进后Sigmoid函数的自变量,以计算种群早熟的概率;最后,基于2个随机候选解和粒子历史最优解的反向解更新粒子位置,从而增强种群逃离局部最优的能力。所提算法与经典PSO算法以及5种改进后的PSO算法在8种经典测试函数上的对比实验的结果表明,所提算法的收敛精度和收敛速度和6种对比算法相比,在5种测试函数上排名第一。可见,PDORW-PSO的收敛精度和收敛速度较对比算法有较大提升。 展开更多
关键词 粒子群优化算法 改进Sigmoid函数 早熟检测 对立学习 随机游走
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部