期刊文献+
共找到919篇文章
< 1 2 46 >
每页显示 20 50 100
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测
1
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 机器学习 粒子群优化的支持向量机回归(pso-SVR)算法 承载力 敏感性分析
在线阅读 下载PDF
Light Focusing through Scattering Media by Particle Swarm Optimization 被引量:9
2
作者 黄惠玲 陈子阳 +2 位作者 孙存志 刘绩林 蒲继雄 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第10期37-40,共4页
We demonstrate light focusing through scattering media by introducing particle swarm optimization for modulat- ing the phase wavefront. Light refocusing is simulated numerically based on the angular spectrum method an... We demonstrate light focusing through scattering media by introducing particle swarm optimization for modulat- ing the phase wavefront. Light refocusing is simulated numerically based on the angular spectrum method and the circular Gaussian distribution model of the scattering media. Experimentally, a spatial light modulator is used to control the phase of incident light, so as to make the scattered light converge to a focus. The influence of divided segments of input light and the effect of the number of iterations on light intensity enhancement are investigated. Simulation results are found to be in good agreement with the theoretical analysis for light refocusing. 展开更多
关键词 SLM Light Focusing through Scattering Media by particle swarm Optimization pso
在线阅读 下载PDF
Robot stereo vision calibration method with genetic algorithm and particle swarm optimization 被引量:1
3
作者 汪首坤 李德龙 +1 位作者 郭俊杰 王军政 《Journal of Beijing Institute of Technology》 EI CAS 2013年第2期213-221,共9页
Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a ... Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a three-stage calibration method based on hybrid intelligent optimization is pro- posed for nonlinear camera models in this paper. The motivation is to improve the accuracy of the calibration process. In this approach, the stereo vision calibration is considered as an optimization problem that can be solved by the GA and PSO. The initial linear values can be obtained in the frost stage. Then in the second stage, two cameras' parameters are optimized separately. Finally, the in- tegrated optimized calibration of two models is obtained in the third stage. Direct linear transforma- tion (DLT), GA and PSO are individually used in three stages. It is shown that the results of every stage can correctly find near-optimal solution and it can be used to initialize the next stage. Simula- tion analysis and actual experimental results indicate that this calibration method works more accu- rate and robust in noisy environment compared with traditional calibration methods. The proposed method can fulfill the requirements of robot sophisticated visual operation. 展开更多
关键词 robot stereo vision camera calibration genetic algorithm (GA) particle swarm opti-mization (pso hybrid intelligent optimization
在线阅读 下载PDF
Shaping the Wavefront of Incident Light with a Strong Robustness Particle Swarm Optimization Algorithm 被引量:4
4
作者 李必奇 张彬 +3 位作者 冯祺 程晓明 丁迎春 柳强 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第12期15-18,共4页
We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and geneti... We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background. 展开更多
关键词 pso In Shaping the Wavefront of Incident Light with a Strong Robustness particle swarm Optimization Algorithm GA
在线阅读 下载PDF
Structural optimization of Au–Pd bimetallic nanoparticles with improved particle swarm optimization method 被引量:1
5
作者 邵桂芳 朱梦 +4 位作者 上官亚力 李文然 张灿 王玮玮 李玲 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第6期131-139,共9页
Due to the dependence of the chemical and physical properties of the bimetallic nanoparticles(NPs) on their structures,a fundamental understanding of their structural characteristics is crucial for their syntheses a... Due to the dependence of the chemical and physical properties of the bimetallic nanoparticles(NPs) on their structures,a fundamental understanding of their structural characteristics is crucial for their syntheses and wide applications. In this article, a systematical atomic-level investigation of Au–Pd bimetallic NPs is conducted by using the improved particle swarm optimization(IPSO) with quantum correction Sutton–Chen potentials(Q-SC) at different Au/Pd ratios and different sizes. In the IPSO, the simulated annealing is introduced into the classical particle swarm optimization(PSO) to improve the effectiveness and reliability. In addition, the influences of initial structure, particle size and composition on structural stability and structural features are also studied. The simulation results reveal that the initial structures have little effects on the stable structures, but influence the converging rate greatly, and the convergence rate of the mixing initial structure is clearly faster than those of the core-shell and phase structures. We find that the Au–Pd NPs prefer the structures with Au-rich in the outer layers while Pd-rich in the inner ones. Especially, when the Au/Pd ratio is 6:4, the structure of the nanoparticle(NP) presents a standardized Pd(core) Au(shell) structure. 展开更多
关键词 bimetallic nanoparticles stable structures particle swarm optimization (pso simulated annealing
在线阅读 下载PDF
基于改进PSO-ELM的坑湖水质预测与评价
6
作者 石秀峰 王进 +3 位作者 揣新 王绍平 罗长海 岳正波 《合肥工业大学学报(自然科学版)》 北大核心 2025年第2期145-150,共6页
采矿行业产生的尾矿水具有较高的金属离子和硫酸盐质量浓度,同时具有酸化的风险,对尾矿水水质的预测和评价有利于保障尾矿水资源循环利用和可持续发展。文章将线性原始数据通过滑动窗口处理转化为模型的输入矩阵,利用粒子群优化算法(par... 采矿行业产生的尾矿水具有较高的金属离子和硫酸盐质量浓度,同时具有酸化的风险,对尾矿水水质的预测和评价有利于保障尾矿水资源循环利用和可持续发展。文章将线性原始数据通过滑动窗口处理转化为模型的输入矩阵,利用粒子群优化算法(particle swarm optimization,PSO)对极限学习机(extreme learning machine,ELM)进行改进,提出一种基于PSO-ELM的水质预测模型,以安徽马鞍山某矿区坑湖为对象,使用不同网络模型对水质参数进行预测。结果表明,改进后的PSO-ELM模型较BP(back propagation)神经网络、传统ELM具有更高的预测精度,决定系数达到82%,均方误差仅为0.04,并且具有更快的计算和收敛速度。将训练集数据与预测数据相结合,采用Spearman秩相关系数法评价水质稳定性,结果表明pH值和主要无机盐离子质量浓度较为稳定,无明显变化趋势,满足生态和生产需求。 展开更多
关键词 水质监测 滑动窗口 粒子群优化算法(pso) 极限学习机(ELM) 水质评价
在线阅读 下载PDF
Efficient and Stable Optimization of Multi‑pass End Milling Using a Cloud Drop‑Enabled Particle Swarm Optimization Algorithm 被引量:1
7
作者 CAI Xulin YANG Wenan HUANG Chao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第3期462-473,共12页
Optimization of machining parameters is of great importance for multi-pass end milling because machining parameters adversely or positively affect the time and quality of production.This paper develops a second-order ... Optimization of machining parameters is of great importance for multi-pass end milling because machining parameters adversely or positively affect the time and quality of production.This paper develops a second-order fulldiscretization method(2ndFDM)-based 3-D stability prediction model for simultaneous optimization of spindle speed,axial cutting depth and radial cutting depth.The optimal machining parameters in each pass are obtained to achieve the minimum production time comprehensive considering constraints of 3-D stability,machine tool performance,tool life and machining requirements.A cloud drop-enabled particle swarm optimization(CDPSO)algorithm is proposed to solve the developed machining parameter optimization,and 13 benchmark problems are used to evaluate CDPSO algorithm.Numerical results show that CDPSO algorithm has a certain advantage in computational cost as well as comparable search quality and robustness.A demonstrative example is provided. 展开更多
关键词 machining parameter multi-pass end milling chatter stability particle swarm optimization(pso) cloud model
在线阅读 下载PDF
Quantitative algorithm for airborne gamma spectrum of large sample based on improved shuffled frog leaping-particle swarm optimization convolutional neural network 被引量:1
8
作者 Fei Li Xiao-Fei Huang +5 位作者 Yue-Lu Chen Bing-Hai Li Tang Wang Feng Cheng Guo-Qiang Zeng Mu-Hao Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期242-252,共11页
In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamm... In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays. 展开更多
关键词 Large sample Airborne gamma spectrum(AGS) Shuffled frog leaping algorithm(SFLA) particle swarm optimization(pso) Convolutional neural network(CNN)
在线阅读 下载PDF
Hybrid Marine Predators Optimization and Improved Particle Swarm Optimization-Based Optimal Cluster Routing in Wireless Sensor Networks(WSNs) 被引量:1
9
作者 A.Balamurugan Sengathir Janakiraman +1 位作者 M.Deva Priya A.Christy Jeba Malar 《China Communications》 SCIE CSCD 2022年第6期219-247,共29页
Wireless Sensor Networks(WSNs)play an indispensable role in the lives of human beings in the fields of environment monitoring,manufacturing,education,agriculture etc.,However,the batteries in the sensor node under dep... Wireless Sensor Networks(WSNs)play an indispensable role in the lives of human beings in the fields of environment monitoring,manufacturing,education,agriculture etc.,However,the batteries in the sensor node under deployment in an unattended or remote area cannot be replaced because of their wireless existence.In this context,several researchers have contributed diversified number of cluster-based routing schemes that concentrate on the objective of extending node survival time.However,there still exists a room for improvement in Cluster Head(CH)selection based on the integration of critical parameters.The meta-heuristic methods that concentrate on guaranteeing both CH selection and data transmission for improving optimal network performance are predominant.In this paper,a hybrid Marine Predators Optimization and Improved Particle Swarm Optimizationbased Optimal Cluster Routing(MPO-IPSO-OCR)is proposed for ensuring both efficient CH selection and data transmission.The robust characteristic of MPOA is used in optimized CH selection,while improved PSO is used for determining the optimized route to ensure sink mobility.In specific,a strategy of position update is included in the improved PSO for enhancing the global searching efficiency of MPOA.The high-speed ratio,unit speed rate and low speed rate strategy inherited by MPOA facilitate better exploitation by preventing solution from being struck into local optimality point.The simulation investigation and statistical results confirm that the proposed MPOIPSO-OCR is capable of improving the energy stability by 21.28%,prolonging network lifetime by 18.62%and offering maximum throughput by 16.79%when compared to the benchmarked cluster-based routing schemes. 展开更多
关键词 Marine Predators Optimization Algorithm(MPOA) particle swarm Optimization(pso) Optimal Cluster-based Routing Cluster Head(CH)selection Wireless Sensor Networks(WSNs)
在线阅读 下载PDF
基于改进PSO-LGWO算法的光伏最大功率点跟踪研究
10
作者 王钰霖 孙丽颖 《太阳能学报》 北大核心 2025年第3期328-334,共7页
在光伏阵列受到不均匀太阳辐照时,其输出特性曲线会出现多个峰值点,常规的最大功率点跟踪方法(MPPT)可能会陷入局部峰值点,导致光伏阵列不能在最大功率点下运行。为解决此类问题,提出一种基于改进粒子群优化的灰狼算法与莱维飞行模块相... 在光伏阵列受到不均匀太阳辐照时,其输出特性曲线会出现多个峰值点,常规的最大功率点跟踪方法(MPPT)可能会陷入局部峰值点,导致光伏阵列不能在最大功率点下运行。为解决此类问题,提出一种基于改进粒子群优化的灰狼算法与莱维飞行模块相结合的算法(PSO-LGWO)。该算法在函数测试和静态阴影测试中,相较于其他灰狼算法都可在保证算法跟踪精度的同时提升收敛速度;在动态阴影测试中,相较于实际光伏发电站中常见的MPPT方法,可以跳出局部最优解,且在太阳辐照度变化较大时,在保证算法跟踪精度的同时具有更快的收敛速度。 展开更多
关键词 最大功率点跟踪 太阳电池 太阳能发电 灰狼算法 粒子群算法
在线阅读 下载PDF
A New Class of Hybrid Particle Swarm Optimization Algorithm 被引量:3
11
作者 Da-Qing Guo Yong-Jin Zhao +1 位作者 Hui Xiong Xiao Li 《Journal of Electronic Science and Technology of China》 2007年第2期149-152,共4页
A new class of hybrid particle swarm optimization (PSO) algorithm is developed for solving the premature convergence caused by some particles in standard PSO fall into stagnation. In this algorithm, the linearly dec... A new class of hybrid particle swarm optimization (PSO) algorithm is developed for solving the premature convergence caused by some particles in standard PSO fall into stagnation. In this algorithm, the linearly decreasing inertia weight technique (LDIW) and the mutative scale chaos optimization algorithm (MSCOA) are combined with standard PSO, which are used to balance the global and local exploration abilities and enhance the local searching abilities, respectively. In order to evaluate the performance of the new method, three benchmark functions are used. The simulation results confirm the proposed algorithm can greatly enhance the searching ability and effectively improve the premature convergence. 展开更多
关键词 particle swarm optimization (pso inertia weight CHAOS SCALE premature convergence benchmark function.
在线阅读 下载PDF
基于改进PSO-GWO算法的渠系优化配水模型研究
12
作者 姚成宝 岳春芳 +1 位作者 张胜江 郑秋丽 《人民黄河》 北大核心 2025年第1期128-133,共6页
为减少渠系输配水过程中的水量损失,针对闸门调控时间各异和频繁启闭的问题,以精河灌区茫乡团结支渠支斗两级渠系渗漏损失量最小为目标建立渠系配水模型,首次采用“组间轮灌,组内续灌”的配水方式,通过改进PSO-GWO算法求解,确定斗渠最... 为减少渠系输配水过程中的水量损失,针对闸门调控时间各异和频繁启闭的问题,以精河灌区茫乡团结支渠支斗两级渠系渗漏损失量最小为目标建立渠系配水模型,首次采用“组间轮灌,组内续灌”的配水方式,通过改进PSO-GWO算法求解,确定斗渠最优轮灌编组、配水流量和灌水时间等重要参数,得出渠系渗漏损失量和算法迭代次数,并与粒子群算法、灰狼算法的求解结果进行对比。改进模型使灌水时间缩短了0.62 d,支斗两级渠系水利用系数提高了0.168,改进PSO-GWO算法迭代次数为3次、渠系渗漏总量为16.69万m^(3),优于传统算法的配水结果。实例应用情况表明,改进算法具有更强的寻优能力和收敛性,并且模型在满足高效配水的同时,减少了闸门启闭次数,实现了集中调控,配水模式便捷,应用价值较高。 展开更多
关键词 渠系配水 渗漏损失 轮灌编组 改进pso-GWO算法 粒子群算法 灰狼算法
在线阅读 下载PDF
Feature Selection with Fluid Mechanics Inspired Particle Swarm Optimization for Microarray Data
13
作者 Shengsheng Wang Ruyi Dong 《Journal of Beijing Institute of Technology》 EI CAS 2017年第4期517-524,共8页
Deoxyribonucleic acid( DNA) microarray gene expression data has been widely utilized in the field of functional genomics,since it is helpful to study cancer,cells,tissues,organisms etc.But the sample sizes are relat... Deoxyribonucleic acid( DNA) microarray gene expression data has been widely utilized in the field of functional genomics,since it is helpful to study cancer,cells,tissues,organisms etc.But the sample sizes are relatively small compared to the number of genes,so feature selection is very necessary to reduce complexity and increase the classification accuracy of samples. In this paper,a completely newimprovement over particle swarm optimization( PSO) based on fluid mechanics is proposed for the feature selection. This newimprovement simulates the spontaneous process of the air from high pressure to lowpressure,therefore it allows for a search through all possible solution spaces and prevents particles from getting trapped in a local optimum. The experiment shows that,this newimproved algorithm had an elaborate feature simplification which achieved a very precise and significant accuracy in the classification of 8 among the 11 datasets,and it is much better in comparison with other methods for feature selection. 展开更多
关键词 feature selection particle swarm optimization (pso fluid mechanics (FM) microarray data support vector machine (SVM)
在线阅读 下载PDF
Particle Swarm Optimization Applied to Some Anti-Windup Problems
14
作者 Aojia Ma Lei Zhang +2 位作者 Junfeng Zhao Yahui Li Feng Gao 《Journal of Beijing Institute of Technology》 EI CAS 2019年第3期477-490,共14页
The particle swarm optimization (PSO) algorithm is introduced to deal with some open anti-windup problems, i.e., determining the initial condition when applying the iterative algorithm to enlarge the estimate of the d... The particle swarm optimization (PSO) algorithm is introduced to deal with some open anti-windup problems, i.e., determining the initial condition when applying the iterative algorithm to enlarge the estimate of the domain of attraction, determining the design point in the delayed anti-windup scheme, and determining the design point and the weighting factors in the multi-stage anti-windup scheme. Therefore, the corresponding PSO-based algorithms are proposed. Unlike the traditional methods in which the free design parameters can only be selected by trial and error with the available computational results, the PSO-based algorithms provide a systematic way to determine these parameters. In addition, the algorithms are easy to be implemented and are very likely to find the desirable parameters that further improve the anti-windup closed-loop performances. Simulation results are presented to validate the effectiveness and advantages of the proposed method. 展开更多
关键词 ANTI-WINDUP particle swarm optimization(pso) INTELLIGENT algorithm
在线阅读 下载PDF
Particle swarm optimization and its application to the design of a compact tunable guided-mode resonant filter
15
作者 Dan-Yan Wang Qing-Kang Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第3期451-455,共5页
A compact tunable guided-mode resonant filter (GMRF) in the telecommunication region near the 1550 nm wave-length is proposed in this paper. Particle swarm optimization (PSO) is used to design the GMRF. The tunabi... A compact tunable guided-mode resonant filter (GMRF) in the telecommunication region near the 1550 nm wave-length is proposed in this paper. Particle swarm optimization (PSO) is used to design the GMRF. The tunability of the GMRF is achieved by an MEMS-based physical movement (in the horizontal or vertical direction) combined with an incident angle in a certain range. The results show that the resonant wavelength tuning of 110 nm (140mm) is obtained by horizontal movement of 168 nm (vertical movement of 435 nm) combined with an about 11° variation of incident angle. 展开更多
关键词 guided-mode resonant filter (GMRF) particle swarm optimization (pso tunable filter rigorous coupled wave analysis (RCWA)
在线阅读 下载PDF
Optimization of ANFIS Network Using Particle Swarm Optimization Modeling of Scour around Submerged Pipes
16
作者 Rahim Gerami Moghadam Saeid Shabanlou Fariborz Yosefvand 《Journal of Marine Science and Application》 CSCD 2020年第3期444-452,共9页
In general,submerged pipes passing over the sedimentary bed of seas are installed for transmitting oil and gas to coastal regions.The stability of submerged pipes can be threatened with waves and coastal flows occurri... In general,submerged pipes passing over the sedimentary bed of seas are installed for transmitting oil and gas to coastal regions.The stability of submerged pipes can be threatened with waves and coastal flows occurring at coastal regions.In this study,for the first time,the adaptive neuro-fuzzy inference system(ANFIS)is optimized using the particle swarm optimization(PSO)algorithm,and a meta-heuristic artificial intelligence model is developed for simulating the scour pattern around submerged pipes located in sedimentary beds.Afterward,six ANFIS-PSO models are developed by means of parameters affecting the scour depth.Then,the superior model is detected through sensitivity analysis.This model has the function of all input parameters.The calculated correlation coefficient and scatter index for this model are 0.993 and 0.047,respectively.The ratio of the pipe distance from the sedimentary bed to the submerged pipe diameter is introduced as the most effective input parameter.PSO significantly improves the performance of the ANFIS model.Approximately 36% of the scour depths simulated using the ANFIS model have an error less than 5%,whereas the value for ANFIS-PSO is roughly 72%. 展开更多
关键词 Adaptive neuro-fuzzy inference system(ANFIS) Meta-heuristic model particle swarm optimization(pso) Scour around submerged pipes Coastal regions
在线阅读 下载PDF
基于PSO-GM(1,1)模型在大坝安全监测中的应用
17
作者 白希佳 《中国水能及电气化》 2025年第1期41-45,共5页
文章以观音阁水库大坝监测数据为例,采用粒子群优化算法(PSO)对灰色预测模型GM(1,1)参数进行优化,建立了PSO-GM(1,1)模型,利用13期的数据进行预测。结果表明,经粒子群优化算法优化后的GM(1,1)模型预测精度较高,且随着监测数据的增加,预... 文章以观音阁水库大坝监测数据为例,采用粒子群优化算法(PSO)对灰色预测模型GM(1,1)参数进行优化,建立了PSO-GM(1,1)模型,利用13期的数据进行预测。结果表明,经粒子群优化算法优化后的GM(1,1)模型预测精度较高,且随着监测数据的增加,预测值越接近实测监测值,预测精度越高。本文所建模型计算速度快、建模简单,适合工程现场快速应用,为大坝安全监测提供了一种可靠的新方法。 展开更多
关键词 大坝 安全监测 粒子群优化算法 灰色预测模型
在线阅读 下载PDF
基于PSO-RF的路面附着系数估计
18
作者 黄逊 查云飞 《汽车文摘》 2025年第4期42-47,共6页
在利用随机森林算法(RF)进行路面附着系数估计时,存在模型构建过程中特征选择不够优化以及决策树集成的多样性不足等问题。为此,提出一种基于粒子群优化算法(PSO)对RF进行改进的方法,并给出算法流程。建立路面附着系数估计RF模型,使用PS... 在利用随机森林算法(RF)进行路面附着系数估计时,存在模型构建过程中特征选择不够优化以及决策树集成的多样性不足等问题。为此,提出一种基于粒子群优化算法(PSO)对RF进行改进的方法,并给出算法流程。建立路面附着系数估计RF模型,使用PSO算法用于优化RF的参数配置,包括每棵树的特征数量、树的数量等关键因素,以增强模型的多样性和泛化能力。最后,在MATLAB/Simulink平台上搭建了联合仿真模型进行试验,对比试验结果表明:基于PSO-RF的随机森林路面附着系数估计方法能够克服传统RF方法中存在的局限性,其估计精度和稳定性均得到显著提升。 展开更多
关键词 路面附着系数 随机森林 粒子群优化 状态估计
在线阅读 下载PDF
基于PSO-TCN深度学习模型的新疆台兰河流域洪水预报研究
19
作者 曹彪 刘敏杰 +2 位作者 余其鹰 张廷 马强 《中国防汛抗旱》 2025年第2期74-80,共7页
准确的超前洪水预报有利于提前规划流域防洪措施。通过耦合粒子群算法(PSO)和时间卷积神经网络(TCN)构建新疆台兰河流域PSO-TCN洪水预报模型,并基于台兰河流域1960—2014年实测降雨径流资料,对50场历史洪水进行了模型测试。结果表明,相... 准确的超前洪水预报有利于提前规划流域防洪措施。通过耦合粒子群算法(PSO)和时间卷积神经网络(TCN)构建新疆台兰河流域PSO-TCN洪水预报模型,并基于台兰河流域1960—2014年实测降雨径流资料,对50场历史洪水进行了模型测试。结果表明,相同预见期条件下,PSO-TCN模型预报洪水过程纳什效率系数(NSE)更高、均方根误差(RMSE)和洪峰相对误差(RE)更低,PSO-TCN洪水预报模型在台兰河流域具有更好的适用性和鲁棒性。当预见期超过5h,PSO-TCN模型预报洪峰相对误差仍会超过20%,未来有望融合洪水过程发生机理,进一步提高深度学习模型在洪水预报应用中的泛化能力。研究成果可为流域洪水预报计算提供参考。 展开更多
关键词 洪水预报 深度学习 时间卷积神经网络 粒子群优化算法 pso-TCN模型 台兰河流域
在线阅读 下载PDF
基于PSO−ELM的综采工作面液压支架姿态监测方法 被引量:3
20
作者 李磊 许春雨 +5 位作者 宋建成 田慕琴 宋单阳 张杰 郝振杰 马锐 《工矿自动化》 CSCD 北大核心 2024年第8期14-19,共6页
针对基于惯性测量单元的液压支架姿态解算方法会产生累计误差、校正结果不准确的问题,提出一种基于粒子群优化(PSO)−极限学习机(ELM)的综采工作面液压支架姿态监测方法。以液压支架顶梁俯仰角为监测对象,采用倾角传感器和陀螺仪采集液... 针对基于惯性测量单元的液压支架姿态解算方法会产生累计误差、校正结果不准确的问题,提出一种基于粒子群优化(PSO)−极限学习机(ELM)的综采工作面液压支架姿态监测方法。以液压支架顶梁俯仰角为监测对象,采用倾角传感器和陀螺仪采集液压支架顶梁支护姿态实时信息,对采集到的数据进行预处理,将处理后的数据输入PSO−ELM误差补偿模型中,得到解算误差预测值;同时通过卡尔曼滤波融合进行液压支架姿态解算,得到解算值;再用误差预测值对解算值进行误差补偿,从而求得更加准确的顶梁支护姿态数据。该方法只考虑加速度和角速度数据与解算误差的关系,不依赖具体的物理模型,可有效降低姿态解算累计误差。实验结果表明:液压支架顶梁俯仰角平均绝对误差由补偿前的1.4208°减少到0.0580°,且误差曲线具有良好的收敛性,验证了所提方法可持续稳定地监测液压支架的支护姿态。 展开更多
关键词 液压支架 顶梁俯仰角 姿态监测 误差补偿 粒子群优化 极限学习机 pso−ELM
在线阅读 下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部