期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于振动信号的低压万能式断路器分合闸故障程度评估方法的研究 被引量:32
1
作者 孙曙光 张强 +2 位作者 杜太行 王景芹 王岩 《中国电机工程学报》 EI CSCD 北大核心 2017年第18期5473-5482,共10页
目前设备的机械故障诊断技术的研究多限于定性诊断,而故障诊断中故障程度的定量评估更能有效的指导设备维护。该文提出了一种低压万能式断路器分合闸故障程度定量评估的方法。首先对断路器工作模式进行识别,即利用局部均值分解(local me... 目前设备的机械故障诊断技术的研究多限于定性诊断,而故障诊断中故障程度的定量评估更能有效的指导设备维护。该文提出了一种低压万能式断路器分合闸故障程度定量评估的方法。首先对断路器工作模式进行识别,即利用局部均值分解(local mean decomposition,LMD)将采集到的分合闸振动信号自适应分解,求取主要乘积函数(product function,PF)的改进多尺度排列熵(multi-scale permutation entropy,MMPE)构成特征向量,再经过降维后,作为改进支持向量机(support vector machine,SVM)的输入量,实现断路器工作模式的识别;当断路器处于故障模式时,对采集的振动信号求取多尺度排列熵偏均值(partial mean of multi-scale permutation entropy,PMMPE),作为故障程度定量评估指标,并参照所求得的不同故障模式的故障程度特性曲线,可实现分合闸故障程度的定量评估。经实测数据验证表明,所提方法可以完成断路器工作模式的有效识别,且PMMPE指标相较于峭度、能量和多尺度排列熵平均值指标,能够更加有效的完成低压万能式断路器分合闸故障程度的定量评估。 展开更多
关键词 低压万能式断路器 局部均值分解(LMD) 改进多尺度排列熵(MMPE) 支持向量机(SVM) 多尺度排列熵偏 均值(pmmpe)故障程度评估
在线阅读 下载PDF
基于多尺度排列熵的液压泵故障识别 被引量:30
2
作者 王余奎 李洪儒 叶鹏 《中国机械工程》 EI CAS CSCD 北大核心 2015年第4期518-523,共6页
将排列熵引入液压泵的故障识别中,分析了排列熵作为液压泵故障特征指标的性能;采用互信息法和伪近邻法优选排列熵计算中的延迟时间和嵌入维数,基于优选参数得到了能够更好区分液压泵故障的排列熵。针对单尺度排列熵只能在单个尺度上衡... 将排列熵引入液压泵的故障识别中,分析了排列熵作为液压泵故障特征指标的性能;采用互信息法和伪近邻法优选排列熵计算中的延迟时间和嵌入维数,基于优选参数得到了能够更好区分液压泵故障的排列熵。针对单尺度排列熵只能在单个尺度上衡量振动信号复杂度的不足,在对多尺度排列熵进行研究的基础上提出了一种综合多尺度排列熵熵值和排列熵变化趋势的指标——多尺度排列熵偏均值,对液压泵实测信号的分析结果验证了该指标作为液压泵故障特征的有效性和优越性。 展开更多
关键词 多尺度排列熵 偏均值 液压泵 故障特征
在线阅读 下载PDF
基于多尺度排列熵的波纹管压浆超声检测 被引量:2
3
作者 郑豪 韩庆邦 +2 位作者 许洲琛 彭浩 王鹏 《声学技术》 CSCD 北大核心 2016年第6期531-536,共6页
将多尺度排列熵引入波纹管压浆质量检测中,对不同注浆密实程度的波纹管进行超声检测,对回波信号进行分析。为了检测信号在不同尺度下的动力学特征,提出了一种基于多尺度排列熵偏均值的波纹管压浆质量检测方法,利用有限元进行仿真,仿真... 将多尺度排列熵引入波纹管压浆质量检测中,对不同注浆密实程度的波纹管进行超声检测,对回波信号进行分析。为了检测信号在不同尺度下的动力学特征,提出了一种基于多尺度排列熵偏均值的波纹管压浆质量检测方法,利用有限元进行仿真,仿真结果表明,波纹管压浆质量越差,回波信号对应的排列熵偏均值越小。实际模型的处理结果表明该指标能够有效地判断波纹管压浆质量。 展开更多
关键词 多尺度排列熵 偏均值 波纹管
在线阅读 下载PDF
电机轴承故障的多尺度排列熵特征提取与GK识别 被引量:7
4
作者 周永强 卜文绍 《组合机床与自动化加工技术》 北大核心 2021年第4期70-74,共5页
为了有效提取电机轴承故障特征并准确识别出故障类型,提出了复合多尺度排列熵偏均值的特征参数提取和GK聚类的模式识别方法。在故障特征提取方面,使用自适应局部迭代滤波对振动信号进行分解,选择与原振动信号相关性较大的前3个分量,计... 为了有效提取电机轴承故障特征并准确识别出故障类型,提出了复合多尺度排列熵偏均值的特征参数提取和GK聚类的模式识别方法。在故障特征提取方面,使用自适应局部迭代滤波对振动信号进行分解,选择与原振动信号相关性较大的前3个分量,计算分量信号的复合多尺度排列熵偏均值作为特征参数,则每个振动信号得到了一个三维特征向量;在模式识别方面,使用GK算法对特征参数进行聚类。使用美国某大学的电机轴承数据进行效果验证,与基于EMD分解的特征参数比,ALIF分解所得特征的聚类效果更好,类与类之间区分明显,不存在交叉混叠现象,且样本围绕类心的分布更加紧凑。实验结果证明了故障特征提取方法和故障模式识别方法的有效性。 展开更多
关键词 轴承故障诊断 多尺度排列熵 偏均值
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部