煤炭灰分值是衡量煤炭质量的关键指标之一,灰分含量和性质对燃烧设备、环境、后续的加工利用都有着极大影响。针对目前煤炭灰分检测方法的滞后性、劳动密集型问题,提出了一种基于XRF光谱的预处理(Preprocessing,PRE)与偏最小二乘法(Part...煤炭灰分值是衡量煤炭质量的关键指标之一,灰分含量和性质对燃烧设备、环境、后续的加工利用都有着极大影响。针对目前煤炭灰分检测方法的滞后性、劳动密集型问题,提出了一种基于XRF光谱的预处理(Preprocessing,PRE)与偏最小二乘法(Partial Least Squares,PLS)相结合的XRF煤炭灰分智能预测算法。通过将XRF技术获取煤炭样品的光谱数据输入PLS主模型初步预测灰分,再将相关校正参数输入补偿优化模型中,最终将两者相加得到预测灰分值。试验结果表明:相对于偏最小二乘法回归、神经网络回归模型,PRE-PLS模型决定系数为0.9951,均方根误差为0.9411,平均绝对误差为0.7332%,表明该模型具备较高的精度,能够胜任现场检测工作,为生产提供可靠指导。展开更多
Simultaneous determination of heavy metal cations and accurate quantitative prediction of them are of great interest in analytical chemistry.This work has focused on a comprehensive comparison of partial least squares...Simultaneous determination of heavy metal cations and accurate quantitative prediction of them are of great interest in analytical chemistry.This work has focused on a comprehensive comparison of partial least squares(PLS-1)and artificial neural networks(ANN)as two types of chemometric methods.For this purpose,aluminum,iron and copper were studied as three analytes whose UV-Vis absorption spectra highly overlap each other.Accordance with determined parameters(ligand concentration,pH,waiting times,the relationship between absorbance and concentration of metal ion effect and foreign ions)are provided and the optimum conditions.After establishing the optimum conditions for Fe^(3+),Al^(3+) and Cu^(2+) containing mixtures spectrophotometric determinations and the data calibration method of least squares(PLS-1)regression,and artificial neural network(ANN)methods were used.Chemometric methods are applied in a fast,simple,and the results are applicable.展开更多
文摘煤炭灰分值是衡量煤炭质量的关键指标之一,灰分含量和性质对燃烧设备、环境、后续的加工利用都有着极大影响。针对目前煤炭灰分检测方法的滞后性、劳动密集型问题,提出了一种基于XRF光谱的预处理(Preprocessing,PRE)与偏最小二乘法(Partial Least Squares,PLS)相结合的XRF煤炭灰分智能预测算法。通过将XRF技术获取煤炭样品的光谱数据输入PLS主模型初步预测灰分,再将相关校正参数输入补偿优化模型中,最终将两者相加得到预测灰分值。试验结果表明:相对于偏最小二乘法回归、神经网络回归模型,PRE-PLS模型决定系数为0.9951,均方根误差为0.9411,平均绝对误差为0.7332%,表明该模型具备较高的精度,能够胜任现场检测工作,为生产提供可靠指导。
文摘Simultaneous determination of heavy metal cations and accurate quantitative prediction of them are of great interest in analytical chemistry.This work has focused on a comprehensive comparison of partial least squares(PLS-1)and artificial neural networks(ANN)as two types of chemometric methods.For this purpose,aluminum,iron and copper were studied as three analytes whose UV-Vis absorption spectra highly overlap each other.Accordance with determined parameters(ligand concentration,pH,waiting times,the relationship between absorbance and concentration of metal ion effect and foreign ions)are provided and the optimum conditions.After establishing the optimum conditions for Fe^(3+),Al^(3+) and Cu^(2+) containing mixtures spectrophotometric determinations and the data calibration method of least squares(PLS-1)regression,and artificial neural network(ANN)methods were used.Chemometric methods are applied in a fast,simple,and the results are applicable.