期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A new model for predicting hydraulic fracture penetration or termination at an orthogonal interface between dissimilar formations
1
作者 Yu Zhao Yong-Fa Zhang +2 位作者 Guo-Dong Tian Chao-Lin Wang Jing Bi 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2810-2829,共20页
Vertical height growth of hydraulic fractures(HFs)can unexpectedly penetrate a stratigraphic interface and propagate into neighboring layers,thereby resulting in low gas-production efficiency and high risk of groundwa... Vertical height growth of hydraulic fractures(HFs)can unexpectedly penetrate a stratigraphic interface and propagate into neighboring layers,thereby resulting in low gas-production efficiency and high risk of groundwater contamination or fault reactivation.Understanding of hydraulic fracture behavior at the interface is of pivotal importance for the successful development of layered reservoirs.In this paper,a twodimensional analytical model was developed to examine HF penetration and termination behavior at an orthogonal interface between two dissimilar materials.This model involves changes in the stress singularity ahead of the HF tip,which may alter at the formation interface due to material heterogeneity.Three critical stress conditions were considered to assess possible fracture behavior(i.e.,crossing,slippage,and opening)at the interface.Then,this model was verified by comparing its theoretical predictions to numerical simulations and three independent experiments.Good agreement with the simulation results and experimental data was observed,which shows the validity and reliability of this model.Finally,a parametric study was conducted to investigate the effects of key formation parameters(elastic modulus,Poisson’s ratio,and fracture toughness)between adjacent layers.These results indicate that the variation in the introduced parameters can limit or promote vertical HF growth by redistributing the induced normal and shear stresses at the interface.Among the three studied parameters,Poisson’s ratio has the least influence on the formation interface.When the fracture toughness and elastic modulus of the bounding layer are larger than those of the pay zone layer,the influence of fracture toughness will dominate the HF behavior at the interface;otherwise,the HF behavior will more likely be influenced by elastic modulus. 展开更多
关键词 Analytical model Hydraulic fracture Interface of dissimilar materials Vertical propagation behavior parametric sensitivity analysis
在线阅读 下载PDF
Kinetics modeling for the mixed reforming of methane over Ni-CeO_2/MgAl_2O_4 catalyst
2
作者 Hye Jin Jun Myung-June Park +3 位作者 Seung-Chan Baek Jong Wook Bae Kyoung-Su Ha Ki-Won Jun 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第1期9-17,共9页
Kinetics model was developed for the mixed (steam and dry) reforming of methane, which is useful for the control of H2/CO ratio. The equilibrium constants of reaction rate were determined using the experimental equi... Kinetics model was developed for the mixed (steam and dry) reforming of methane, which is useful for the control of H2/CO ratio. The equilibrium constants of reaction rate were determined using the experimental equilibrium data at different reaction temperatures, while the forward reaction rate constants were estimated using the experimental data under non-equilibrium (high inert fraction and high space velocity) conditions. The comparison between calculated and experimental data clearly showed that the developed model described satisfactorily, and further analysis using the parametric sensitivity determined the wall temperature and CO2 fraction in the feed gas as effective parameters for the manipulation of CH4 conversion and H2/CO ratio of synthesis gas under the equilibrium condition. Meanwhile, the inert fraction, rather than the residence time, was selected as additional parameter under non-equilibrium condition. 展开更多
关键词 mixed reforming nickel-based catalyst kinetics modeling parameter estimation parametric sensitivity
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部