期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Multi-channel signal parameters joint optimization for GNSS terminals 被引量:1
1
作者 WANG Qian ZHANG Chuanding XIAN Deyong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期39-47,共9页
Traditional global navigation satellite system(GNSS)terminals for satellite navigation adopt independent channels to track the signals from different satellites, which results in a lack of information interaction betw... Traditional global navigation satellite system(GNSS)terminals for satellite navigation adopt independent channels to track the signals from different satellites, which results in a lack of information interaction between the channels. Inspired by the vector tracking idea, and drawing lessons from the principle that in the position domain the Taylor expanded pseudorange observations can be used for positioning via the least squares method, this paper proposes a novel least squares-based multi-channel parameter joint estimation(MPJE) method in the signal domain, which not only retains the advantages of channel fusion, but also maintains the flexibility and diversity of the localization algorithm. With achieving optimal carrier to noise ratio as the goal, the proposed method obtains the required code loop and carrier loop parameters for signal tracking in the domain of whole channels. Experimental results indicate that this method fully achieves the assistant fusion advantages of frequency lock loop(FLL), phase lock loop(PLL)and delay lock loop(DLL), making good use of the robustness and dynamic properties of the FLL and the measurement accuracy of the DLL, and is helpful for achieving stable and accurate signal tracking under weak signals and high dynamic stress environments. 展开更多
关键词 least squares method signal parameter optimization vector tracking global navigation satellite system(GNSS) weight matrix
在线阅读 下载PDF
Optimization of Honing Wheel Structure Parameters in Ultra-precision Plane Honing
2
作者 SYOJI Katsuo 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期57-58,共2页
Free abrasive particle machining in simple machine such as: honing, polishing can get higher surface finish mirror, but surface error, and working procedure is hard to control. Therefore, the vertical disposed ultra-p... Free abrasive particle machining in simple machine such as: honing, polishing can get higher surface finish mirror, but surface error, and working procedure is hard to control. Therefore, the vertical disposed ultra-precision plane honing method by ultra-particle diamond honing wheel is put forward to. The results of experiments indicate: plane-honing wheel has higher machining accuracy and machining efficiency. But at the same time the structure parameters of honing wheel effects on machining accuracy. By analyzing the relation of honing wheel structure parameters and workpiece machining accuracy, the relation of honing wheel and wear coefficient, then this paper gets honing wheel structure parameters in the condition of best accuracy coefficient and wear coefficient, and resolve the problem of choosing honing wheel structure parameters in ultra-precision plane honing at last. This paper analyses the relation of honing wheel structure parameters and workpiece machining accuracy coefficient and wear coefficient, by building relative movement math model of honing wheel and workpiece in plane honing. Through theory calculating, the result indicate: about honing machine tools for large volume manufacture, honing wheel wear is main effect factor, so honing wheel should adopt obverse triangle radial structure. About honing machining for high accuracy and low-batch quantities, machining accuracy coefficient is main factors; so honing wheel should adopt reverse triangle radial structure. Neglected the manufacturing factors of honing wheel, then we can design honing wheel with high power curve structure to meet the need of machining accuracy coefficient and honing wheel wear coefficient in higher accuracy honing. 展开更多
关键词 ultra-precision plane honing honing wheel structure machining accuracy optimization parameters
在线阅读 下载PDF
Cookie Baking Process Optimization and Quality Analysis Based on Food 3D Printing
3
作者 Liu Chenghai Li Jingyi +2 位作者 Wu Chunsheng Zhao Xinglong Zheng Xianzhe 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第1期61-73,共13页
In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the in... In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology. 展开更多
关键词 food 3D printing baking process COOKIE quality analysis optimization of process parameter
在线阅读 下载PDF
Design and experiment of an automated honey-harvesting robot
4
作者 ZHANG Di WANG Chunying +2 位作者 YANG Mingguo SUN Zixuan LIU Ping 《智能化农业装备学报(中英文)》 2025年第2期24-34,共11页
The conventional honey production is dominated by fragmented,small-scale individual farming models.The traditional approach of honey-harvesting involving manual beehive frames extraction,beeswax layer excision and cen... The conventional honey production is dominated by fragmented,small-scale individual farming models.The traditional approach of honey-harvesting involving manual beehive frames extraction,beeswax layer excision and centrifugal honey separation,expose beekeepers to potential bee stings and frequently compromise honeycomb integrity.To address these limitations,we designed an automated honey-harvesting robot capable of autonomous frame extraction and beeswax removal.The robot mainly consists of a mobile mechanism equipped with image recognition for beehive localization,a magnetic adsorption-based beehive frame handling device(60.8 N maximum suction)coupled with a cross-slide mechanism for precise frame manipulation,and a thermal beeswax layer-melting apparatus,with optimal melting parameters(15 m/s airflow at 90℃ for 30 seconds)determined through rigorous thermal flow simulations utilizing FLUENT/Mechanical software.Field experiments demonstrated beehive frames handling success rate exceeding 85%,beeswax layer removal efficacy over 80% and damage of honeycombs below 30%.The experiment results validate the robot's operational reliability and its capacity to automate critical harvesting procedures.This study significantly reduces the labor intensity for beekeepers,effectively eliminates the risk of direct human-bee contact and improves the removal of beeswax layer,thereby catalyzing the modernization of the beekeeping industry. 展开更多
关键词 honey-harvesting AUTOMATED beeswax layer-melting fluid-structure interaction parameter optimization
在线阅读 下载PDF
Parameter optimization for improved aerodynamic performance of louver-type wind barrier for train-bridge system 被引量:17
5
作者 HE Xu-hui FANG Dong-xu +1 位作者 LI Huan SHI Kang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第1期229-240,共12页
To improve the safety of trains running in an undesirable wind environment,a novel louver-type wind barrier is proposed and further studied in this research using a scaled wind tunnel simulation with 1:40 scale models... To improve the safety of trains running in an undesirable wind environment,a novel louver-type wind barrier is proposed and further studied in this research using a scaled wind tunnel simulation with 1:40 scale models.Based on the aerodynamic performance of the train-bridge system,the parameters of the louver-type wind barrier are optimized.Compared to the case without a wind barrier,it is apparent that the wind barrier improves the running safety of trains,since the maximum reduction of the moment coefficient of the train reaches 58%using the louver-type wind barrier,larger than that achieved with conventional wind barriers(fence-type and grid-type).A louver-type wind barrier has more blade layers,and the rotation angle of the adjustable blade of the louver-type wind barrier is 90–180°(which induces the flow towards the deck surface),which is more favorable for the aerodynamic performance of the train.Comparing the 60°,90°and 120°wind fairings of the louver-type wind barrier blade,the blunt fairing is disadvantageous to the operational safety of the train. 展开更多
关键词 wind barrier aerodynamic force train-bridge system scaled wind tunnel simulation parameter optimization
在线阅读 下载PDF
Flow measurement and parameter optimization of right-angled flow passage in hydraulic manifold block 被引量:7
6
作者 HU Jian-jun CHEN Jin +1 位作者 QUAN Ling-xiao KONG Xiang-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第4期852-864,共13页
This study was conducted to investigate the flow field characteristics of right-angled flow passage with various cavities in the typical hydraulic manifold block.A low-speed visualization test rig was developed and th... This study was conducted to investigate the flow field characteristics of right-angled flow passage with various cavities in the typical hydraulic manifold block.A low-speed visualization test rig was developed and the flow field of the right-angled flow passage with different cavity structures was measured using 2D-PIV technique.Numerical model was established to simulate the three-dimensional flow field.Seven eddy viscosity turbulence models were investigated in predicting the flow field by comparing against the particle image relocimetry(PIV)measurement results.By defining the weight error function K,the S-A model was selected as the appropriate turbulence model.Then,a three-factor,three-level response surface numerical test was conducted to investigate the influence of flow passage connection type,cavity diameter and cavity length-diameter ratio on pressure loss.The results show that the Box-Benhnken Design(BBD)model can predict the total pressure loss accurately.The optimal factor level appeared in flow passage connection type II,14.64 mm diameter and 67.53%cavity length-diameter ratio.The total pressure loss decreased by 11.15%relative to the worst factor level,and total pressure loss can be reduced by 64.75%when using an arc transition right-angled flow passage,which indicates a new direction for the optimization design of flow passage in hydraulic manifold blocks. 展开更多
关键词 flow measurement particle image relocimetry right-angled flow passage parameter optimization
在线阅读 下载PDF
Multiple-response optimization for melting process of aluminum melting furnace based on response surface methodology with desirability function 被引量:3
7
作者 周孑民 王计敏 +2 位作者 闫红杰 李世轩 贵广臣 《Journal of Central South University》 SCIE EI CAS 2012年第10期2875-2885,共11页
To reduce the fuel consumption and emissions and also enhance the molten aluminum quality, a mathematical model with user-developed melting model and burning capacity model, were established according to the features ... To reduce the fuel consumption and emissions and also enhance the molten aluminum quality, a mathematical model with user-developed melting model and burning capacity model, were established according to the features of melting process of regenerative aluminum melting furnaces. Based on validating results by heat balance test for an aluminum melting furnace, CFD (computational fluid dynamics) technique, in association with statistical experimental design were used to optimize the melting process of the aluminum melting furnace. Four important factors influencing the melting time, such as horizontal angle between burners, height-to-radius ratio, natural gas mass flow and air preheated temperature, were identified by PLACKETT-BURMAN design. A steepest descent method was undertaken to determine the optimal regions of these factors. Response surface methodology with BOX-BEHNKEN design was adopted to further investigate the mutual interactions between these variables on RSD (relative standard deviation) of aluminum temperature, RSD of furnace temperature and melting time. Multiple-response optimization by desirability function approach was used to determine the optimum melting process parameters. The results indicate that the interaction between the height-to-radius ratio and horizontal angle between burners affects the response variables significantly. The predicted results show that the minimum RSD of aluminum temperature (12.13%), RSD of furnace temperature (18.50%) and melting time (3.9 h) could be obtained under the optimum conditions of horizontal angle between burners as 64°, height-to-radius ratio as 0.3, natural gas mass flow as 599 m3/h, and air preheated temperature as 639 ℃. These predicted values were further verified by validation experiments. The excellent correlation between the predicted and experimental values confirms the validity and practicability of this statistical optimum strategy. 展开更多
关键词 aluminum melting furnace melting process response surface methodology desirability function multiple response parameter optimization numerical simulation PLACKETT-BURMAN design BOX-BEHNKEN design
在线阅读 下载PDF
Reinforcement learning based parameter optimization of active disturbance rejection control for autonomous underwater vehicle 被引量:3
8
作者 SONG Wanping CHEN Zengqiang +1 位作者 SUN Mingwei SUN Qinglin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第1期170-179,共10页
This paper proposes a liner active disturbance rejection control(LADRC) method based on the Q-Learning algorithm of reinforcement learning(RL) to control the six-degree-of-freedom motion of an autonomous underwater ve... This paper proposes a liner active disturbance rejection control(LADRC) method based on the Q-Learning algorithm of reinforcement learning(RL) to control the six-degree-of-freedom motion of an autonomous underwater vehicle(AUV).The number of controllers is increased to realize AUV motion decoupling.At the same time, in order to avoid the oversize of the algorithm, combined with the controlled content, a simplified Q-learning algorithm is constructed to realize the parameter adaptation of the LADRC controller.Finally, through the simulation experiment of the controller with fixed parameters and the controller based on the Q-learning algorithm, the rationality of the simplified algorithm, the effectiveness of parameter adaptation, and the unique advantages of the LADRC controller are verified. 展开更多
关键词 autonomous underwater vehicle(AUV) reinforcement learning(RL) Q-LEARNING linear active disturbance rejection control(LADRC) motion decoupling parameter optimization
在线阅读 下载PDF
Study of trajectory optimization using terminal-node adaptive-altered spline algorithm 被引量:2
9
作者 Xia Qunli Guo Tao Qi Zaikang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期551-557,共7页
The advantage of using a spline function to evaluate the trajectory parameters optimization is discussed. A new method that using adaptive varied terminal-node spline interpolation for solving trajectory optimization ... The advantage of using a spline function to evaluate the trajectory parameters optimization is discussed. A new method that using adaptive varied terminal-node spline interpolation for solving trajectory optimization is proposed. And it is validated in optimizing the trajectory of guided bombs and extended range guided munitions (ERGM). The solutions are approximate to the real optimization results. The advantage of this arithmetic is that it can be used to solve the trajectory optimization with complex models. Thus, it is helpful for solving the practical engineering optimization problem. 展开更多
关键词 trajectory optimization optimization control parameter optimization spline interpolation
在线阅读 下载PDF
Performance-based passive control analysis of adjacent structures:Optimization of Maxwell dampers 被引量:2
10
作者 吴巧云 代健州 朱宏平 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2180-2197,共18页
The performance-based passive control analysis of the Maxwell dampers between one 10-story and one 6-story adjacent RC frames is conducted in this work.Not only the optimal parameters but also the optimal arrangements... The performance-based passive control analysis of the Maxwell dampers between one 10-story and one 6-story adjacent RC frames is conducted in this work.Not only the optimal parameters but also the optimal arrangements of the Maxwell dampers are proposed based on the optimal target of making the total exceeding probability of the adjacent structures to be minimal.The applicability of the analytical expressions of the Maxwell damper damping parameters under different seismic performance targets are firstly examined and then the preferable damping parameters of the Maxwell dampers are proposed through the extensive parametric studies.Furthermore,the optimal arranging positions and optimal arranging numbers of the Maxwell dampers between the adjacent buildings are derived based on a large number of seismic fragility analyses,as well.The general arranging laws of the Maxwell dampers between the adjacent buildings are generated based on the discussion of the theoretical method through the simplified plane model.The optimal parameters and optimal arrangement of the Maxwell dampers presented make both the adjacent structures have preferable controlled effects under each seismic performance target which can satisfy the requirements of multi-performance seismic resistance of the modern seismic codes. 展开更多
关键词 adjacent structures passive control seismic fragility analysis optimal parameters optimal arrangement exceeding probability
在线阅读 下载PDF
Trajectory online optimization for unmanned combat aerial vehicle using combined strategy 被引量:1
11
作者 Kangsheng Dong Hanqiao Huang +1 位作者 Changqiang Huang Zhuoran Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期963-970,共8页
This paper presents a combined strategy to solve the trajectory online optimization problem for unmanned combat aerial vehicle (UCAV). Firstly, as trajectory directly optimizing is quite time costing, an online trajec... This paper presents a combined strategy to solve the trajectory online optimization problem for unmanned combat aerial vehicle (UCAV). Firstly, as trajectory directly optimizing is quite time costing, an online trajectory functional representation method is proposed. Considering the practical requirement of online trajectory, the 4-order polynomial function is used to represent the trajectory, and which can be determined by two independent parameters with the trajectory terminal conditions; thus, the trajectory online optimization problem is converted into the optimization of the two parameters, which largely lowers the complexity of the optimization problem. Furthermore, the scopes of the two parameters have been assessed into small ranges using the golden section ratio method. Secondly, a multi-population rotation strategy differential evolution approach (MPRDE) is designed to optimize the two parameters; in which, 'current-to-best/1/bin', 'current-to-rand/1/bin' and 'rand/2/bin' strategies with fixed parameter settings are designed, these strategies are rotationally used by three subpopulations. Thirdly, the rolling optimization method is applied to model the online trajectory optimization process. Finally, simulation results demonstrate the efficiency and real-time calculation capability of the designed combined strategy for UCAV trajectory online optimizing under dynamic and complicated environments. 展开更多
关键词 unmanned combat aerial vehicle (UCAV) trajectory online optimization functional representation parameter optimization rolling optimization differential evolution
在线阅读 下载PDF
Optimal design of structural parameters for shield cutterhead based on fuzzy mathematics and multi-objective genetic algorithm 被引量:12
12
作者 夏毅敏 唐露 +2 位作者 暨智勇 程永亮 卞章括 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期937-945,共9页
In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters ... In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%. 展开更多
关键词 shield tunneling machine cutterhead structural parameters fuzzy mathematics finite element optimization
在线阅读 下载PDF
Adaptive backtracking search optimization algorithm with pattern search for numerical optimization 被引量:6
13
作者 Shu Wang Xinyu Da +1 位作者 Mudong Li Tong Han 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期395-406,共12页
The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powe... The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm. 展开更多
关键词 evolutionary algorithm backtracking search optimization algorithm(BSA) Hooke-Jeeves pattern search parameter adaption numerical optimization
在线阅读 下载PDF
Tuning microstructures of TC4 ELI to improve explosion resistance
14
作者 Changle Zhang Yangwei Wang +6 位作者 Lin Wang Zixuan Ning Guoju Li Dongping Chen Zhi-Wei Yan Yuchen Song Xucai Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期78-99,共22页
A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to impr... A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to improve explosion resistance.Moreover,the current challenge is quantifying microstructural changes'effects on explosion resistance and incorporating microstructural changes into finite element models.This work aims to tune microstructures to improve explosion resistance and elucidate their anti-explosion mechanism,and find a suitable method to incorporate microstructural changes into finite element models.In this work,we systematically study the deformation and failure characteristics of TC4 ELI plates with varying microstructures using an air explosion test and LS-DYNA finite element modeling.The Johnson-Cook(JC)constitutive parameters are used to quantify the effects of microstructural changes on explosion resistance and incorporate microstructural changes into finite element models.Because of the heat treatment,one plate has equiaxed microstructure and the other has bimodal microstructure.The convex of the plate after the explosion has a quadratic relationship with the charge mass,and the simulation results demonstrate high reliability,with the error less than 17.5%.Therefore,it is feasible to obtain corresponding JC constitutive parameters based on the differences in microstructures and mechanical properties and characterize the effects of microstructural changes on explosion resistance.The bimodal target exhibits excellent deformation resistance.The response of bimodal microstructure to the shock wave may be more intense under explosive loading.The well-coordinated structure of the bimodal target enhances its resistance to deformation. 展开更多
关键词 MICROSTRUCTURE Finite element modelling Parameter optimization Failure characteristics Explosion resistance
在线阅读 下载PDF
Unmanned wave glider heading model identification and control by artificial fish swarm algorithm 被引量:2
15
作者 WANG Lei-feng LIAO Yu-lei +2 位作者 LI Ye ZHANG Wei-xin PAN Kai-wen 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2131-2142,共12页
We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,th... We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,the rigid-flexible multi-body system of the UWG was simplified as a rigid system composed of“thruster+float body”,based on which a planar motion model of the UWG was established.Second,we obtained the model parameters using an empirical method combined with parameter identification,which means that some parameters were estimated by the empirical method.In view of the specificity and importance of the heading control,heading model parameters were identified through the artificial fish swarm algorithm based on tank test data,so that we could take full advantage of the limited trial data to factually describe the dynamic characteristics of the system.Based on the established heading motion model,parameters of the heading S-surface controller were optimized using the artificial fish swarm algorithm.Heading motion comparison and maritime control experiments of the“Ocean Rambler”UWG were completed.Tank test results show high precision of heading motion prediction including heading angle and yawing angular velocity.The UWG shows good control performance in tank tests and sea trials.The efficiency of the proposed method is verified. 展开更多
关键词 unmanned wave glider artificial fish swarm algorithm heading model parameters identification control parameters optimization
在线阅读 下载PDF
Numerical investigation of effect of eccentric decoupled charge structure on blasting-induced rock damage 被引量:16
16
作者 PAN Cheng XIE Li-xiang +3 位作者 LI Xing LIU Kai GAO Peng-fei TIAN Long-gang 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期663-679,共17页
Eccentric decoupling blasting is commonly used in underground excavation.Determination of perimeter hole parameters(such as the blasthole diameter,spacing,and burden)based on an eccentric charge structure is vital for... Eccentric decoupling blasting is commonly used in underground excavation.Determination of perimeter hole parameters(such as the blasthole diameter,spacing,and burden)based on an eccentric charge structure is vital for achieving an excellent smooth blasting effect.In this paper,the Riedel-Hiermaier-Thoma(RHT)model was employed to study rock mass damage under smooth blasting.Firstly,the parameters of the RHT model were calibrated by using the existing SHPB experiment,which were then verified by the existing blasting experiment results.Secondly,the influence of different charge structures on the blasting effect was investigated using the RHT model.The simulation results indicated that eccentric charge blasting has an obvious pressure eccentricity effect.Finally,to improve the blasting effect,the smooth blasting parameters were optimized based on an eccentric charge structure.The overbreak and underbreak phenomena were effectively controlled,and a good blasting effect was achieved with the optimized blasting parameters. 展开更多
关键词 eccentric charge structure smooth blasting rock mass damage RHT model parameter optimization
在线阅读 下载PDF
Fractional order PID control for steer-by-wire system of emergency rescue vehicle based on genetic algorithm 被引量:8
17
作者 XU Fei-xiang LIU Xin-hui +2 位作者 CHEN Wei ZHOU Chen CAO Bing-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2340-2353,共14页
Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of... Aiming at dealing with the difficulty for traditional emergency rescue vehicle(ECV)to enter into limited rescue scenes,the electro-hydraulic steer-by-wire(SBW)system is introduced to achieve the multi-mode steering of the ECV.The overall structure and mathematical model of the SBW system are described at length.The fractional order proportional-integral-derivative(FOPID)controller based on fractional calculus theory is designed to control the steering cylinder’s movement in SBW system.The anti-windup problem is considered in the FOPID controller design to reduce the bad influence of saturation.Five parameters of the FOPID controller are optimized using the genetic algorithm by maximizing the fitness function which involves integral of time by absolute value error(ITAE),peak overshoot,as well as settling time.The time-domain simulations are implemented to identify the performance of the raised FOPID controller.The simulation results indicate the presented FOPID controller possesses more effective control properties than classical proportional-integral-derivative(PID)controller on the part of transient response,tracking capability and robustness. 展开更多
关键词 steer-by-wire system emergency rescue vehicle fractional order proportional-integral-derivative(FOPID)controller parameter optimization genetic algorithm
在线阅读 下载PDF
Modified constitutive model and workability of 7055 aluminium alloy in hot plastic compression 被引量:15
18
作者 ZHANG Tao ZHANG Shao-hang +2 位作者 LI Lei LU Shi-hong GONG Hai 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期2930-2942,共13页
To obtain flow behavior and workability of 7055 aluminium alloy during hot deformation,hot compression tests at different temperatures and strain rates are conducted.True stress?strain curves of 7055 aluminium alloy u... To obtain flow behavior and workability of 7055 aluminium alloy during hot deformation,hot compression tests at different temperatures and strain rates are conducted.True stress?strain curves of 7055 aluminium alloy under different conditions are obtained and the flow stress increases with ascending strain rate and descending temperature.For Arrhenius constitutive equation,each material parameter is set as a constant,which will bring forth large error for predicting flow behavior.In this work,material parameters are fitted as a function of temperature or strain rate based on experimental results and a modified constitutive equation is established for more accurate prediction of flow behavior of 7055 aluminium alloy.The effects of temperature and strain rate on power dissipation and instability are analyzed to establish a processing map of 7055 aluminium alloy.The dominant deformation mechanism for microstructure evolution at different deformation conditions can be determined and high efficiency of power dissipation may be achieved from power dissipation map.Meanwhile,proper processing parameters to avoid flow instability can be easily acquired in instability map.According to the processing map,optimized processing parameters of 7055 aluminium alloy are temperature of 673?723 K and strain rate of 0.01?0.4 s^?1,during which its efficiency of power dissipation is over 30%.Finite element method(FEM)is used to obtain optimized parameter in hot rolling process on the basis of processing map. 展开更多
关键词 7055 aluminium alloy flow behavior modified constitutive equation processing map optimized parameters
在线阅读 下载PDF
Autotuning algorithm of particle swarm PID parameter based on D-Tent chaotic model 被引量:8
19
作者 Min Zhu Chunling Yang Weiliang Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第5期828-837,共10页
An improved particle swarm algorithm based on the D-Tent chaotic model is put forward aiming at the standard particle swarm algorithm. The convergence rate of the late of proposed algorithm is improved by revising the... An improved particle swarm algorithm based on the D-Tent chaotic model is put forward aiming at the standard particle swarm algorithm. The convergence rate of the late of proposed algorithm is improved by revising the inertia weight of global optimal particles and the introduction of D-Tent chaotic sequence. Through the test of typical function and the autotuning test of proportionalintegral-derivative (PID) parameter, finally a simulation is made to the servo control system of a permanent magnet synchronous motor (PMSM) under double-loop control of rotating speed and current by utilizing the chaotic particle swarm algorithm. Studies show that the proposed algorithm can reduce the iterative times and improve the convergence rate under the condition that the global optimal solution can be got. 展开更多
关键词 D-Tent particle swarm proportional-integral- derivative (PID) parameter optimization.
在线阅读 下载PDF
Parameter analysis of anchor bolt support for large-span and jointed rock mass 被引量:5
20
作者 李夕兵 周子龙 +1 位作者 李启月 胡柳青 《Journal of Central South University of Technology》 EI 2005年第4期483-487,共5页
In order to obtain the optimal parameters of anchor bolt supporting system for large-span and jointed rock mass in Kaiyang Phosphor Mine, it is expensive and unavailable with the method of in-situ experiments. This pa... In order to obtain the optimal parameters of anchor bolt supporting system for large-span and jointed rock mass in Kaiyang Phosphor Mine, it is expensive and unavailable with the method of in-situ experiments. This paper describes a numerical modeling with discrete element method for the supporting effects of different type of anchor bolts. The anchor bolts with variant length of 0.5m, 0.8m, 1.0m, diameter of 10mm, 15mm, 20mm, setting spacing of 3.0m, 2.5m, 2.0m, and setting angle of 10°, 20°, 30°, are simulated respectively. The results show that there exist optimal parameters of anchor bolt support for large-span and jointed rock mass. For the bolt support of the concerning, the optimal length is 2.53.5m, the diameter is 2535mm, the spacing is 0.50.6m, and the setting angle is 105°. 展开更多
关键词 jointed rock mass anchor bolt support optimal parameter
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部