期刊文献+
共找到551篇文章
< 1 2 28 >
每页显示 20 50 100
Circular object recognition based on shape parameters 被引量:1
1
作者 Chen Aijun Li Jinzong Zhu Bing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期199-204,共6页
To recognize circular objects rapidly in satellite remote sensing imagery, an approach using their geometry properties is presented. The original image is segmented to be a binary one by one dimension maximum entropy ... To recognize circular objects rapidly in satellite remote sensing imagery, an approach using their geometry properties is presented. The original image is segmented to be a binary one by one dimension maximum entropy threshold algorithm and the binary image is labeled with an algorithm based on recursion technique. Then, shape parameters of all labeled regions are calculated and those regions with shape parameters satisfying certain conditions are recognized as circular objects. The algorithm is described in detail, and comparison experiments with the randomized Hough transformation (RHT) are also provided. The experimental results on synthetic images and real images show that the proposed method has the merits of fast recognition rate, high recognition efficiency and the ability of anti-noise and anti-jamming. In addition, the method performs well when some circular objects are little deformed and partly misshapen. 展开更多
关键词 Circular object Pattern recognition Shape parameter Region labeling Image segmentation
在线阅读 下载PDF
A new discriminative sparse parameter classifier with iterative removal for face recognition
2
作者 TANG De-yan ZHOU Si-wang +2 位作者 LUO Meng-ru CHEN Hao-wen TANG Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1226-1238,共13页
Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typ... Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations. 展开更多
关键词 collaborative representation-based classification discriminative sparse parameter classifier face recognition iterative removal sparse representation two-phase test sample sparse representation
在线阅读 下载PDF
Intelligent recognition and information extraction of radar complex jamming based on time-frequency features
3
作者 PENG Ruihui WU Xingrui +3 位作者 WANG Guohong SUN Dianxing YANG Zhong LI Hongwen 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1148-1166,共19页
In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise p... In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results. 展开更多
关键词 complex jamming recognition time frequency feature convolutional neural network(CNN) parameter estimation
在线阅读 下载PDF
基于DSATools的发电机及其控制系统模型参数仿真方法 被引量:2
4
作者 覃松涛 邵常宁 +2 位作者 李凌 赵燃 刘梅 《中国电力》 CSCD 北大核心 2015年第1期68-75,共8页
精确的发电机系统参数是电力系统分析的基础。很多情况下由于工况条件限制无法对发电机参数进行准确的测量,给系统的安全校核、指标估计及潮流优化等工作带来较大困难。提出了一种基于仿真模型进行参数辨识的方法,通过DSATools仿真工具... 精确的发电机系统参数是电力系统分析的基础。很多情况下由于工况条件限制无法对发电机参数进行准确的测量,给系统的安全校核、指标估计及潮流优化等工作带来较大困难。提出了一种基于仿真模型进行参数辨识的方法,通过DSATools仿真工具搭建发电机及其控制系统仿真模型,采用曲线拟合的方法进行参数优化得到了准确的仿真结果。以广西平班水电厂发电机组的发电机及其控制系统作为算例,验证了仿真模型参数辨识的可行性。 展开更多
关键词 发电机及其控制系统 仿真模型 参数辨识
在线阅读 下载PDF
Research on Rice Leaf Disease Recognition Based on BP Neural Network 被引量:1
5
作者 Shen Wei-zheng Guan Ying +1 位作者 Wang Yan Jing Dong-jun 《Journal of Northeast Agricultural University(English Edition)》 CAS 2019年第3期75-86,共12页
To solve the problem of mistake recognition among rice diseases, automatic recognition methods based on BP(back propagation) neural network were studied in this paper for blast, sheath blight and bacterial blight. Cho... To solve the problem of mistake recognition among rice diseases, automatic recognition methods based on BP(back propagation) neural network were studied in this paper for blast, sheath blight and bacterial blight. Chose mobile terminal equipment as image collecting tool and built database of rice leaf images with diseases under threshold segmentation method. Characteristic parameters were extracted from color, shape and texture. Furthermore, parameters were optimized using the single-factor variance analysis and the effects of BP neural network model. The optimization would simplify BP neural network model without reducing the recognition accuracy. The finally model could successfully recognize 98%, 96% and 98% of rice blast, sheath blight and white leaf blight, respectively. 展开更多
关键词 rice LEAF disease recognition FEATURE extraction optimization o f CHARACTERISTIC paramete BP NEURAL network
在线阅读 下载PDF
基于PSO-XGBoost的煤层断层智能识别方法研究 被引量:1
6
作者 林朋 孙成 +2 位作者 任珂 刘育林 李阳 《矿业科学学报》 北大核心 2025年第1期57-69,共13页
为进一步提高地下断层识别准确率和解释效率,使用极限梯度提升树(XGBoost)机器学习算法对煤层断层进行智能识别,并结合粒子群算法(PSO)优化模型相关参数,构建基于PSO-XGBoost的断层构造识别模型。建立正演模型对PSO-XGBoost模型进行检验... 为进一步提高地下断层识别准确率和解释效率,使用极限梯度提升树(XGBoost)机器学习算法对煤层断层进行智能识别,并结合粒子群算法(PSO)优化模型相关参数,构建基于PSO-XGBoost的断层构造识别模型。建立正演模型对PSO-XGBoost模型进行检验,并基于滇东矿区采集的实际数据对比分析PSO-XGBoost模型与PSO-RF、PSO-SVM模型的分类预测性能,选择准确率和对数损失值作为评价分类器预测模型的主要指标评价各模型的准确度。结果表明,基于PSO-XGBoost的模型在断层构造识别中展现出较高的准确率和更好的稳定性。 展开更多
关键词 断层识别 XGBoost PSO 机器学习 参数优化
在线阅读 下载PDF
基于无参数聚类和改进支持向量机多特征融合的控制图模式识别 被引量:1
7
作者 潘柏松 邱敏鹏 钱丽娟 《计算机集成制造系统》 北大核心 2025年第3期855-868,共14页
为提升智能制造中产品质量管控的准确性和及时性,提出一种基于无参数聚类和改进支持向量机多特征融合的控制图模式识别方法。采用蒙特卡洛法生成模拟数据集,考虑了质量特征均值微动的情况。将无参数聚类提取的历史数据信息特征,与统计... 为提升智能制造中产品质量管控的准确性和及时性,提出一种基于无参数聚类和改进支持向量机多特征融合的控制图模式识别方法。采用蒙特卡洛法生成模拟数据集,考虑了质量特征均值微动的情况。将无参数聚类提取的历史数据信息特征,与统计特征以及形状特征进行融合,通过交叉实验获取最优特征组合。借助白鲸算法改进支持向量机分类器,实现对控制图异常模式的准确高效识别。通过仿真实验比较了不同分类器在不同数据集复杂程度下的识别准确性和效率,结果显示,所提出的分类模型对数据集复杂程度的影响较小,即使在复杂数据集上也能保持98.63%以上的识别精度,并具备训练速度快、计算复杂度低的优点。 展开更多
关键词 控制图 模式识别 特征融合 无参数聚类
在线阅读 下载PDF
参数高效化微调的双分支视频动作识别方法
8
作者 王小伟 沈燕飞 邢庆君 《河南理工大学学报(自然科学版)》 北大核心 2025年第4期21-28,共8页
目的面向视频的AI智慧体育对于个性化训练、定制化运动分析具有重要的现实价值。现有的视频动作分析框架依赖于“预训练-微调”的范式将图像预训练模型迁移到视频时序建模中,然而,随着模型尺寸和预训练规模的不断扩大,一方面直接微调需... 目的面向视频的AI智慧体育对于个性化训练、定制化运动分析具有重要的现实价值。现有的视频动作分析框架依赖于“预训练-微调”的范式将图像预训练模型迁移到视频时序建模中,然而,随着模型尺寸和预训练规模的不断扩大,一方面直接微调需更新全部参数导致计算成本高昂,另一方面难以基于图像大模型实现视频时空特征的建模。方法为此,提出一种基于大规模图像预训练模型的双分支视频动作识别框架TBN(two branch network),其包含时空解耦的双分支架构,分别处理静态背景特征和时序动态动作特征。在迁移中,预训练权重保持冻结,仅通过对额外增加的Prompt和Adaptor中的少量参数进行训练,实现从图像预训练模型到视频时序建模的参数高效化迁移。此外,针对现有基准数据集在高速运动场景的不足,构建一个大规模体育运动数据集Kinetics-Sports,包含42个运动类别(含篮球、滑冰、跨栏等),提供更严格的测试基准。结果在Kinetics-Sports,UCF101和HDBM51数据集上的实验结果表明,提出的方法在3个数据集上的识别准确率分别达到97.8%,78.0%,74.2%,优于目前几个数据集上最先进的方法,且参数量仅有12 MB,计算复杂度低于现有主流算法。结论提出的模型在精度-效率方面取得了更好的平衡,提升了体育运动动作检测的准确率和推理效率,为视觉大模型视频迁移提供了高效解决方案。 展开更多
关键词 视频动作识别 预训练模型 参数高效化微调 双分支网络 时空建模
在线阅读 下载PDF
基于轻量化网络的帕金森步态识别方法 被引量:1
9
作者 郭坛 时文雅 +1 位作者 郇战 刘洋 《传感器与微系统》 北大核心 2025年第4期143-147,共5页
为了提高帕金森步态的识别效率并保持高识别精度,提出了一种基于轻量化帕金森步态识别方法-多头量化时域卷积网络(MQ-TCN)。用TCN层替换深度可分离卷积中的逐通道卷积,并部署TTQ算法,减少模型的参数量和参数复杂度。其次,该研究还分析... 为了提高帕金森步态的识别效率并保持高识别精度,提出了一种基于轻量化帕金森步态识别方法-多头量化时域卷积网络(MQ-TCN)。用TCN层替换深度可分离卷积中的逐通道卷积,并部署TTQ算法,减少模型的参数量和参数复杂度。其次,该研究还分析了帕金森步态数据的冗余性,在略微损失识别精度的前提下大幅降低了模型训练所需的存储空间,进一步提升了模型在轻量设备中的可部署能力。实验结果显示:改进的MQ-TCN平均识别精度达到94.9%,参数量仅为目前最小帕金森步态识别模型的5%,不但保持高效的识别精度,还大幅度降低了模型的参数量与参数复杂度,为后续帕金森步态识别工具在轻量设备上的部署提供了参考依据。 展开更多
关键词 异常步态识别 轻量化卷积 时域卷积网络 参数量化 模型压缩
在线阅读 下载PDF
基于阵列的神经网络水声通信信号多参数联合估计算法
10
作者 成乐 刘悦 +2 位作者 胡正良 朱宏娜 罗斌 《通信学报》 北大核心 2025年第1期67-78,共12页
针对水声信道复杂多变且衰减严重等问题,为提升非合作条件下水声通信信号的检测概率并扩大感知范围,设计了一种新型基于阵列多通道时频谱输入的神经网络多参数联合估计算法。该算法通过引入载波频率标签分配策略,将载波频率作为区分不... 针对水声信道复杂多变且衰减严重等问题,为提升非合作条件下水声通信信号的检测概率并扩大感知范围,设计了一种新型基于阵列多通道时频谱输入的神经网络多参数联合估计算法。该算法通过引入载波频率标签分配策略,将载波频率作为区分不同信号的关键物理特征,有效避免了频带外信号和噪声的干扰;利用端到端的多任务学习,能够同时完成信号检测、调制模式识别,以及对信号个数、载波频率、带宽和波达方向的联合估计,从而避免了传统算法中需要先进行波束成形再进行检测识别的复杂流程。仿真实验结果表明,在阵列阵元位置失配和信号被噪声掩蔽的情况下,所提算法仍能实现准确的信号估计。进一步的湖上实验验证了所提算法的实用性和泛化能力。 展开更多
关键词 多参数联合估计 波达方向估计 调制模式识别 阵列信号处理 神经网络
在线阅读 下载PDF
基于动态记忆矩阵和加权多元状态估计的电站辅机故障预警和定位方法
11
作者 余兴刚 王日成 +2 位作者 曾俊 魏鑫 邱斌斌 《热力发电》 北大核心 2025年第3期140-149,共10页
电站辅机设备健康状态评估与故障预警对新型电力系统火电机组的安全运行具有重要意义。以某超临界660 MW火电机组送风机为研究对象,提出了一种基于多重特征参数的送风机故障模型动态记忆矩阵构建方法,该方法可在确保计算结果精度的同时... 电站辅机设备健康状态评估与故障预警对新型电力系统火电机组的安全运行具有重要意义。以某超临界660 MW火电机组送风机为研究对象,提出了一种基于多重特征参数的送风机故障模型动态记忆矩阵构建方法,该方法可在确保计算结果精度的同时有效提升模型计算速度。同时引入权重系数改进多元状态估计(multivariate state estimation technique,MSET)算法,提出了一种权重系数计算方法;采用总体相似度和参数相似度指标进行故障预警和定位,构建了基于动态记忆矩阵和加权MSET算法的送风机故障预警模型。运用该模型对送风机故障进行仿真,仿真结果表明:加权MSET算法不仅能够有效提高故障工况下异常参数的预测精度,还能降低异常参数对正常参数预测结果的影响,进而在实现送风机故障提前预警的同时准确定位出故障点参数。 展开更多
关键词 故障预警和定位 动态记忆矩阵 特征参数 多元状态估计 权重系数
在线阅读 下载PDF
基于探地雷达与PSO−BP神经网络的煤岩界面预测研究
12
作者 张和江 张义平 +2 位作者 侯晨锋 王缪斯 周利治 《工矿自动化》 北大核心 2025年第8期80-87,共8页
针对探地雷达在煤岩界面预测应用中精度不足的问题,利用粒子群优化(PSO)算法对BP神经网络进行优化,构建了基于探地雷达与PSO−BP神经网络的煤岩界面预测模型。采用探地雷达单侧反射法探测煤岩界面,总结不同情况下的雷达图像响应特征,从... 针对探地雷达在煤岩界面预测应用中精度不足的问题,利用粒子群优化(PSO)算法对BP神经网络进行优化,构建了基于探地雷达与PSO−BP神经网络的煤岩界面预测模型。采用探地雷达单侧反射法探测煤岩界面,总结不同情况下的雷达图像响应特征,从而确定煤岩界面特征参数:煤占比、响应位置振幅、煤响应位置振幅平均值、振幅衰减值、反射波所用双程走时、电磁波波速和煤介电常数;根据选择的特征参数开展介电常数测试和模拟煤岩界面识别实验,获取实测样本数据;采用PSO算法对BP神经网络权值与阈值进行优化,得到最优模型;将煤岩界面特征参数输入PSO−BP神经网络模型,实现煤岩界面预测。实验结果表明:与GA−BP和BP神经网络模型相比,PSO−BP模型的均方误差(MSE)分别下降了22.14%和45.54%,平均绝对百分比误差(MAPE)分别下降了22.22%和46.15%,平均绝对误差(MAE)分别下降了31.58%和55.68%,PSO−BP在预测精度、误差控制能力和数据拟合效果上均具有显著优势,预测煤岩界面位置更贴近实际位置,稳定性更好。 展开更多
关键词 煤岩界面识别 探地雷达 BP神经网络 粒子群优化算法 PSO−BP神经网络 特征参数
在线阅读 下载PDF
基于车辆动态行为特征的交通状态识别研究
13
作者 李熙莹 卢美燕 +2 位作者 何兆成 苏淑妍 庞淑敏 《交通运输系统工程与信息》 北大核心 2025年第1期44-55,85,共13页
交通状态识别研究对于预防和缓解交通拥堵具有重要的研究价值,不仅能够为交通管理提供决策支持,还能有效提升道路的运行效率。传统的交通状态识别方法仅考虑单一的宏观特征参数,忽视车辆变道行为的影响以及由此产生的车辆间相互干扰,导... 交通状态识别研究对于预防和缓解交通拥堵具有重要的研究价值,不仅能够为交通管理提供决策支持,还能有效提升道路的运行效率。传统的交通状态识别方法仅考虑单一的宏观特征参数,忽视车辆变道行为的影响以及由此产生的车辆间相互干扰,导致状态划分空间粒度较粗,状态辨识不够精细化,难以深入分析交通拥堵的成因。对此,本文提出一种无人机视角下基于车辆动态行为特征的交通状态识别方法。首先,该方法结合基于旋转检测框的车辆检测算法(YOLOv8s-OBB)和车辆跟踪算法(BoTSORT)检测和跟踪车辆,解决水平框中背景像素冗余以及车辆框重叠的问题,提取车辆空间方向角和旋转4点坐标等更精准的车辆轨迹数据,并计算微观交通流参数;其次,利用获取的车辆空间方向角和旋转位置信息提出车辆动态行为特征参数,即变道干扰率和车辆方向波动指数;然后,结合宏观的平均速度和交通密度参数,构建多维状态特征空间,应用于实际道路场景的交通状态识别。最终实验结果表明:在旋转车辆目标检测中,该方法的mAP@0.5达到0.987,输出的车辆轨迹数据稳定且连续;在交通状态识别中,在平均速度和交通密度作为宏观特征参数的基础上引入变道干扰率后,状态识别精确度达到0.983;进一步,引入车辆方向波动指数后,状态识别精确度达到0.987。同时,根据状态特征空间表征,可以更加精准地将交通状态划分为4种状态,即畅通态、平稳态、拥挤态和堵塞态,从而可以为车辆动态行为定量化分析交通状态影响,为基于无人机视角的交通状态识别提供新的理论参考,为智能交通系统提供先进的状态精细感知。 展开更多
关键词 城市交通 交通状态识别 车辆动态行为特征参数 旋转车辆检测与跟踪 无人机航拍
在线阅读 下载PDF
基于卷积神经网络与可视图像的类滑动放电模式识别 被引量:3
14
作者 潘如政 李怀宇 +3 位作者 崔巍 曾鑫 张帅 邵涛 《高电压技术》 EI CAS CSCD 北大核心 2024年第1期423-431,共9页
为了提高机器学习算法对类滑动放电模式识别的准确率,提出了一种基于卷积神经网络(convolutional neuralnetworks,CNN)与可视图像识别电晕放电、弥散放电和类滑动放电等模式的方法。通过选取气体体积流量0~16 L/min、电极间隙2~10 mm、... 为了提高机器学习算法对类滑动放电模式识别的准确率,提出了一种基于卷积神经网络(convolutional neuralnetworks,CNN)与可视图像识别电晕放电、弥散放电和类滑动放电等模式的方法。通过选取气体体积流量0~16 L/min、电极间隙2~10 mm、脉冲频率0.5~3 kHz等不同条件下的类滑动放电图像构建图像库,搭建CNN模型并优化影响CNN识别性能的超参数,包括网络层数、全连接层(full connected layer,FC)神经元数、卷积核尺寸以及激活函数类型,最后比较了CNN与决策树(decision tree,DT)算法和随机森林(random decision forests,RF)算法的识别效果。结果表明,CNN识别准确率为100%,高于传统机器学习方法。此外,本文还给出了放电模式及条件参数,通过基于反向传播神经网络(back propagation neural networks,BPNN)的聚类分析算法识别弥散放电和类滑动放电,并且准确率为100%。 展开更多
关键词 类滑动放电 可视图像 卷积神经网络 机器学习 模式识别 参数调控
在线阅读 下载PDF
自动语音识别模型压缩算法综述 被引量:2
15
作者 时小虎 袁宇平 +2 位作者 吕贵林 常志勇 邹元君 《吉林大学学报(理学版)》 CAS 北大核心 2024年第1期122-131,共10页
随着深度学习技术的发展,自动语音识别任务模型的参数数量越来越庞大,使得模型的计算开销、存储需求和功耗花费逐渐增加,难以在资源受限设备上部署.因此对基于深度学习的自动语音识别模型进行压缩,在降低模型大小的同时尽量保持原有性... 随着深度学习技术的发展,自动语音识别任务模型的参数数量越来越庞大,使得模型的计算开销、存储需求和功耗花费逐渐增加,难以在资源受限设备上部署.因此对基于深度学习的自动语音识别模型进行压缩,在降低模型大小的同时尽量保持原有性能具有重要价值.针对上述问题,全面综述了近年来该领域的主要工作,将其归纳为知识蒸馏、模型量化、低秩分解、网络剪枝、参数共享以及组合模型几类方法,并进行了系统综述,为模型在资源受限设备的部署提供可选的解决方案. 展开更多
关键词 语音识别 模型压缩 知识蒸馏 模型量化 低秩分解 网络剪枝 参数共享
在线阅读 下载PDF
基于AttentionR2U-net的岩石(体)关键节理智能识别与参数提取 被引量:1
16
作者 孙浩 代宗晟 +1 位作者 金爱兵 陈岩 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期101-110,共10页
针对岩石(体)表面复杂节理网中关键节理的智能识别与参数提取问题,提出一种基于AttentionR2U-net网络与节理几何特征模型耦合识别的方法.在R2U-net网络的基础上引入注意门(attentiongate)改进网络,通过定性与定量的方法对边坡节理图像... 针对岩石(体)表面复杂节理网中关键节理的智能识别与参数提取问题,提出一种基于AttentionR2U-net网络与节理几何特征模型耦合识别的方法.在R2U-net网络的基础上引入注意门(attentiongate)改进网络,通过定性与定量的方法对边坡节理图像和混凝土、龟裂土、常见脆性岩石裂隙图像的识别结果分别作准确性及泛化能力检验;利用AttentionR2U-net网络耦合节理几何特征的方法识别关键节理,提取原始节理和关键节理的几何参数并对其迹长、面积及倾角作差异性分析.研究结果表明:针对岩石(体)节理识别,本文算法的Dice相似系数从U-net网络的0.965提升至0.990,且明显优于传统算法,故本文算法在岩石(体)节理识别上具有更强的可靠性与优越性;针对混凝土、龟裂土和大理岩、花岗岩、砂岩等脆性岩石裂隙的识别,本文算法的Dice相似系数均在0.953以上,故本文算法具有较强的泛化能力.与原始节理网络相比,关键节理网络优势迹长由0.732m显著增大至1.835m,节理倾角分布形式和优势倾角组均不变,优势迹长和倾角的节理占比均显著增大. 展开更多
关键词 岩石(体) 关键节理 AttentionR2U-net网络 智能识别 参数提取
在线阅读 下载PDF
服装外轮廓识别与量化的研究进展 被引量:1
17
作者 李小辉 范慧婷 《服装学报》 CAS 北大核心 2024年第4期302-308,共7页
服装的外轮廓量化是服装智能化设计与生产的前提条件。介绍了服装外轮廓量化的过程,以及传统量化方法与基于人工智能的量化方法。概述了基于特征参数识别和数学公式计算的服装外轮廓量化方法,探究基于扫描等技术构建三维服装模型的外轮... 服装的外轮廓量化是服装智能化设计与生产的前提条件。介绍了服装外轮廓量化的过程,以及传统量化方法与基于人工智能的量化方法。概述了基于特征参数识别和数学公式计算的服装外轮廓量化方法,探究基于扫描等技术构建三维服装模型的外轮廓量化研究方法,并对其优缺点进行分析;总结基于机器学习与生成网络等方法的服装外轮廓量化。服装外观廓形具有复杂柔性多变的特征,目前对服装外轮廓量化的研究大多以简单的服装为样本,应用在廓形分类等领域;在实现服装各部位具体数值推理判断方面的应用相对不足,多为定性研究。研究认为,未来可以综合考虑外轮廓造型与服装款式及面料等多方面因素,并与人工智能技术相结合,使其向智能化、自动化领域发展。 展开更多
关键词 服装图像 服装外轮廓 识别量化 特征参数
在线阅读 下载PDF
法律案件要素识别混合专家大模型 被引量:1
18
作者 尹华 吴梓浩 +2 位作者 柳婷婷 张佳佳 高子千 《计算机科学与探索》 CSCD 北大核心 2024年第12期3260-3271,共12页
智能司法判决正向符合法律判案逻辑的方向转变。案件要素识别是近年来提出的一项基础任务。相比于前期的基于深度学习和机器阅读理解的识别方法,采用大模型的生成式要素识别方法具有进行复杂推理的潜力。但是,目前司法大模型在这类基础... 智能司法判决正向符合法律判案逻辑的方向转变。案件要素识别是近年来提出的一项基础任务。相比于前期的基于深度学习和机器阅读理解的识别方法,采用大模型的生成式要素识别方法具有进行复杂推理的潜力。但是,目前司法大模型在这类基础任务上的效果不佳。提出了一种对话式混合专家要素识别大模型。该模型针对案件特点设计了特定的Prompt,供ChatGLM3-6B-base大模型学习;通过全参微调该大模型获得基础要素识别能力,其权重供后续混合专家共享,降低大模型学习成本;针对不同案件类型场景和标签不平衡场景,在大模型的注意力层引入案件DoRA专家和标签DoRA专家模块,提高模型对任务的区分度;设计可学习门控实现标签专家选择。在CAIL2019和某省脱敏盗窃案件要素识别数据集上,对比了三类方法的九个基准模型,并进行模型消融实验。实验结果显示,提出的模型综合性能F1值高于最优模型性能5.9个百分点;在标签不平衡的CAIL2019数据集上,标签专家一定程度上能够减缓数据极度不平衡给模型带来的影响;同时,CAIL2019上训练的模型不再需要全参微调,通过案件专家和标签专家轻量级微调后,在某省盗窃案件中取得最佳效果,证明模型具有易扩展性。 展开更多
关键词 案件要素识别 大模型 混合参数高效专家 提示词
在线阅读 下载PDF
基于几何特征约束的煤矸DE-XRT精准识别方法 被引量:5
19
作者 何磊 郭永存 +4 位作者 支亚 王爽 李德永 胡坤 程刚 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第5期262-275,共14页
双能X射线透射识别煤矸仍存在厚度、硬化、余辉和扇形效应等缺陷,面向5~150 mm宽厚度煤矸分选参数波动大、识别率低。为此,提出一种基于几何特征约束的煤矸双能X射线透射多维度识别方法。该方法通过目标图像最小外接圆直径和区域面积两... 双能X射线透射识别煤矸仍存在厚度、硬化、余辉和扇形效应等缺陷,面向5~150 mm宽厚度煤矸分选参数波动大、识别率低。为此,提出一种基于几何特征约束的煤矸双能X射线透射多维度识别方法。该方法通过目标图像最小外接圆直径和区域面积两个几何特征区分煤矸厚度,约束X射线透射响应特征的空间分布,进而从多个维度特征削弱缺陷影响。以少量低密度煤和高密度矸石,获取X射线透射响应特征、位置特征和几何特征,结合Relief-F特征选择建立强特征组合。检验多种分类器的识别性能,选取中等高斯SVM作为多维度方法的分类模型。以强特征组合作为输入,自动创建最终决策模型并分类未知煤矸像素点,通过像素变换图像处理方法获取分选参数p值。结果显示,p值与煤矸密度呈强线性相关,利用密度可选取p值调控分选。而p值与煤矸厚度呈现弱线性相关,宽厚度范围内p值离散程度小、可分性好,赋予分选参数较大调整空间。批量试验验证结果显示,多维度法预排矸分选参数p值为33.01%,以此分选参数对不同密度、不同煤种煤矸识别,整体识别率达99.57%。对5~150 mm厚度范围原煤预排矸整体识别率达99.37%。相比较H-L法、RL法,多维度法识别率更高,面向不同厚度煤矸计算得到的p值精度高、一致性更好。印证了几何特征约束下多维度识别方法的有效性及分选参数调控优势,为现有双能X射线煤矸分选装置识别算法提供了设计参考。 展开更多
关键词 煤矸识别 双能X射线 几何特征 多维度 分选参数
在线阅读 下载PDF
基于贝叶斯优化的JADE-SVM中红外食品掺伪判别模型 被引量:2
20
作者 张孟莎 田璐 +1 位作者 李艳坤 沈晓芳 《河北大学学报(自然科学版)》 CAS 北大核心 2024年第2期139-145,共7页
开展了独立成分分析(independent component analysis, ICA)联合支持向量机(support vector machine, SVM)模型对食品掺伪的判别.通过傅里叶变换红外光谱仪获得食用植物油(正品油、掺伪油和炸货油)以及奶粉(纯奶粉和掺三聚氰胺奶粉)的... 开展了独立成分分析(independent component analysis, ICA)联合支持向量机(support vector machine, SVM)模型对食品掺伪的判别.通过傅里叶变换红外光谱仪获得食用植物油(正品油、掺伪油和炸货油)以及奶粉(纯奶粉和掺三聚氰胺奶粉)的中红外光谱,首先,探究不同的光谱预处理方法对所建立模型的影响,经考察选取归一化结合移动平滑对光谱进行预处理;然后采用特征矩阵联合近似对角化(joint approximate diagonalization of eigenmatrices, JADE)方法提取光谱特征信息,其结果优于主成分分析对特征信息的提取效果;通过Kennard-Stone算法划分训练集和测试集,利用贝叶斯优化(Bayesian optimization, BO)对SVM模型参数进行优化.经考察,所构建的JADE-BO-SVM模型对掺伪食品的识别准确度达到100%,该法可为食品掺伪的高效、准确鉴别提供新的途径和思路. 展开更多
关键词 光谱学 中红外光谱 模式识别 参数优化 掺伪判别
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部