A spacecraft attitude estimation method based on electromagnetic vector sensors(EMVS)array is proposed,which employs the orthogonally constrained parallel factor(PARAFAC)algorithm and makes use of measurements of the ...A spacecraft attitude estimation method based on electromagnetic vector sensors(EMVS)array is proposed,which employs the orthogonally constrained parallel factor(PARAFAC)algorithm and makes use of measurements of the two-dimensional direction-of-arrival(2D-DOA)and polarization angles,aiming to address the issues of incomplete,asynchronous,and inaccurate third-party reference used for attitude estimation in spacecraft docking missions by employing the electromagnetic wave’s three-dimensional(3D)wave structure as a complete third-party reference.Comparative analysis with state-ofthe-art algorithms shows significant improvements in estimation accuracy and computational efficiency with this algorithm.Numerical simulations have verified the effectiveness and superiority of this method.A high-precision,reliable,and cost-effective method for rapid spacecraft attitude estimation is provided in this paper.展开更多
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
This paper deals with the problem of H∞ fault estimation for linear time-delay systems in finite frequency domain.First a generalized coordinate change is applied to the original system such that in the new coordinat...This paper deals with the problem of H∞ fault estimation for linear time-delay systems in finite frequency domain.First a generalized coordinate change is applied to the original system such that in the new coordinates all the time-delay terms are injected by the system's input and output.Then an observer-based H∞ fault estimator with input and output injections is proposed for fault estimation with known frequency range.With the aid of Generalized Kalman-Yakubovich-Popov lemma,sufficient conditions on the existence of the H∞ fault estimator are derived and a solution to the observer gain matrices is obtained by solving a set of linear matrix inequalities.Finally,a numerical example is given to illustrate the effectiveness of the proposed method.展开更多
锂离子电池健康状态(state of health,SOH)估计对确保能量存储系统的可靠性和安全性至关重要。然而,现有SOH估计方法在单一特征提取和固定充放电条件依赖方面存在局限性,难以适应多变的实际工作环境。为解决这一问题,本工作提出了一种...锂离子电池健康状态(state of health,SOH)估计对确保能量存储系统的可靠性和安全性至关重要。然而,现有SOH估计方法在单一特征提取和固定充放电条件依赖方面存在局限性,难以适应多变的实际工作环境。为解决这一问题,本工作提出了一种基于弛豫电压的并行多尺度特征融合卷积模型(multi-scale feature fusion convolution model,MSFFCM)结合极端梯度提升树(XGBoost)的SOH估计方法。MSFFCM通过多层堆叠卷积模块提取弛豫电压数据的深层特征,同时利用并行多尺度注意力机制增强了多尺度特征的捕捉能力,并将这些特征与统计特征进行融合,以提升模型的特征提取和融合能力。针对XGBoost模型,本工作应用贝叶斯优化算法进行参数调优,从而在多源融合特征基础上实现高精度SOH估计。实验验证基于两种商用18650型号电池的多温度和多充放电策略数据集,结果表明该方法的均方根误差(RMSE)和平均绝对误差(MAE)均小于0.5%,明显优于传统方法。本工作为锂电池健康管理提供了一种不依赖特定充放电条件的有效估计工具,有望在复杂的实际应用中发挥重要作用。展开更多
针对现有的波达方向(direction of arrival,DOA)估计方法在低信噪比、小快拍、多信源条件下估计精度较低的问题,提出一种基于并行坐标下降算法的DOA估计方法.首先,对空域等角度均匀划分,构造超完备冗余字典;其次,采用并行坐标下降算法...针对现有的波达方向(direction of arrival,DOA)估计方法在低信噪比、小快拍、多信源条件下估计精度较低的问题,提出一种基于并行坐标下降算法的DOA估计方法.首先,对空域等角度均匀划分,构造超完备冗余字典;其次,采用并行坐标下降算法的思想对稀疏信号进行重构,得到信号在空域的稀疏系数矩阵;最后,将稀疏矩阵行向量的l2-范数映射到空域网格上,得到准确的DOA估计值.仿真实验结果表明:在低信噪比、小快拍、多信源条件下,该方法优于子空间类算法、贪婪类算法以及凸优化类算法,具有更低的均方根误差(RMSE)、更高的DOA估计精度和运行效率.展开更多
针对现有二维波达方向(direction of arrival,DOA)估计方法对阵列接收信息利用不充分导致估计性能下降的问题,提出了一种平行互质阵列下对虚拟阵列插值的二维DOA估计方法。该方法通过对平行互质阵列扩展后的虚拟阵列进行插值,利用内插...针对现有二维波达方向(direction of arrival,DOA)估计方法对阵列接收信息利用不充分导致估计性能下降的问题,提出了一种平行互质阵列下对虚拟阵列插值的二维DOA估计方法。该方法通过对平行互质阵列扩展后的虚拟阵列进行插值,利用内插虚拟阵列的协方差矩阵与虚拟测量值之间的关系,提出一个关于等效虚拟测量向量的最小化问题,通过凸优化工具箱重构插值后的虚拟阵列协方差矩阵,结合酉变换和总体最小二乘方法进行DOA估计。仿真结果和湖上试验表明,该方法充分利用了非匀虚拟阵列中的所有虚拟阵元,提高了自由度和估计精度,具有有效性。展开更多
A pneumatic parallel platform driven by an air cylinder and three circumambient pneumatic muscles was considered. Firstly, a mathematical model of the pneumatic servo system was developed for the MIMO nonlinear model-...A pneumatic parallel platform driven by an air cylinder and three circumambient pneumatic muscles was considered. Firstly, a mathematical model of the pneumatic servo system was developed for the MIMO nonlinear model-based controller designed. The pneumatic muscles were controlled by three proportional position valves, and the air cylinder was controlled by a proportional pressure valve. As the forward kinematics of this structure had no analytical solution, the control strategy should be designed in joint space. A cross-coupling integral adaptive robust controller(CCIARC) which combined cross-coupling control strategy and traditional adaptive robust control(ARC) theory was developed by back-stepping method to accomplish trajectory tracking control of the parallel platform. The cross-coupling part of the controller stabilized the length error in joint space as well as the synchronization error, and the adaptive robust control part attenuated the adverse effects of modelling error and disturbance. The force character of the pneumatic muscles was difficult to model precisely, so the on-line recursive least square estimation(RLSE) method was employed to modify the model compensation. The projector mapping method was used to condition the RLSE algorithm to bound the parameters estimated. An integral feedback part was added to the traditional robust function to reduce the negative influence of the slow time-varying characteristic of pneumatic muscles and enhance the ability of trajectory tracking. The stability of the controller designed was proved through Laypunov's theory. Various contrast controllers were designed to testify the newly designed components of the CCIARC. Extensive experiments were conducted to illustrate the performance of the controller.展开更多
The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, wher...The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, where a new term associating with the current measurement information(CMI) was introduced into the expression of the sampled particles. Through the repeated use of the least squares estimate, the CMI can be integrated into the sampling stage in an iterative manner, conducing to the greatly improved sampling quality. By running the IIDF, an iterated PF(IPF) can be obtained. Subsequently, a parallel resampling(PR) was proposed for the purpose of parallel implementation of IPF, whose main idea was the same as systematic resampling(SR) but performed differently. The PR directly used the integral part of the product of the particle weight and particle number as the number of times that a particle was replicated, and it simultaneously eliminated the particles with the smallest weights, which are the two key differences from the SR. The detailed implementation procedures on the graphics processing unit of IPF based on the PR were presented at last. The performance of the IPF, PR and their parallel implementations are illustrated via one-dimensional numerical simulation and practical application of passive radar target tracking.展开更多
A new recursive algorithm with the partial parallel structure based on the linearly constrained minimum variance(LCMV)criterion for adaptive monopulse systems is proposed.The weight vector associated with the original...A new recursive algorithm with the partial parallel structure based on the linearly constrained minimum variance(LCMV)criterion for adaptive monopulse systems is proposed.The weight vector associated with the original whole antenna array is decomposed into several adaptive weight sub-vectors firstly.An adaptive algorithm based on the conventional LCMV principle is then deduced to update the weight sub-vectors for sum and difference beam,respectively.The optimal weight vector can be obtained after convergence.The required computational complexity is evaluated for the proposed technique,which is on the order of O(N)and less than that of the conventional LCMV method.The flow chart scheme with the partial parallel structure of the proposed algorithm is introduced.This scheme is easy to be implemented on a distributed computer/digital signal processor(DSP)system to solve the problems of the heavy computational burden and vast data transmission of the large-scale adaptive monopulse array.Then,the monopulse ratio and convergence rate of the proposed algorithm are evaluated by numerical simulations.Compared with some recent adaptive monopulse estimation methods,a better performance on computational complexity and monopulse ratio can be achieved with the proposed adaptive method.展开更多
文摘A spacecraft attitude estimation method based on electromagnetic vector sensors(EMVS)array is proposed,which employs the orthogonally constrained parallel factor(PARAFAC)algorithm and makes use of measurements of the two-dimensional direction-of-arrival(2D-DOA)and polarization angles,aiming to address the issues of incomplete,asynchronous,and inaccurate third-party reference used for attitude estimation in spacecraft docking missions by employing the electromagnetic wave’s three-dimensional(3D)wave structure as a complete third-party reference.Comparative analysis with state-ofthe-art algorithms shows significant improvements in estimation accuracy and computational efficiency with this algorithm.Numerical simulations have verified the effectiveness and superiority of this method.A high-precision,reliable,and cost-effective method for rapid spacecraft attitude estimation is provided in this paper.
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
基金supported in part by the National Natural Science Foundation of China (60774071)the National High Technology Research and Development Program of China (863 Program) (2008AA121302)+1 种基金the Major State Basic Research Development Program of China (973 Program) (2009CB724000)the State Scholarship Fund of China
文摘This paper deals with the problem of H∞ fault estimation for linear time-delay systems in finite frequency domain.First a generalized coordinate change is applied to the original system such that in the new coordinates all the time-delay terms are injected by the system's input and output.Then an observer-based H∞ fault estimator with input and output injections is proposed for fault estimation with known frequency range.With the aid of Generalized Kalman-Yakubovich-Popov lemma,sufficient conditions on the existence of the H∞ fault estimator are derived and a solution to the observer gain matrices is obtained by solving a set of linear matrix inequalities.Finally,a numerical example is given to illustrate the effectiveness of the proposed method.
文摘针对现有的波达方向(direction of arrival,DOA)估计方法在低信噪比、小快拍、多信源条件下估计精度较低的问题,提出一种基于并行坐标下降算法的DOA估计方法.首先,对空域等角度均匀划分,构造超完备冗余字典;其次,采用并行坐标下降算法的思想对稀疏信号进行重构,得到信号在空域的稀疏系数矩阵;最后,将稀疏矩阵行向量的l2-范数映射到空域网格上,得到准确的DOA估计值.仿真实验结果表明:在低信噪比、小快拍、多信源条件下,该方法优于子空间类算法、贪婪类算法以及凸优化类算法,具有更低的均方根误差(RMSE)、更高的DOA估计精度和运行效率.
文摘针对现有二维波达方向(direction of arrival,DOA)估计方法对阵列接收信息利用不充分导致估计性能下降的问题,提出了一种平行互质阵列下对虚拟阵列插值的二维DOA估计方法。该方法通过对平行互质阵列扩展后的虚拟阵列进行插值,利用内插虚拟阵列的协方差矩阵与虚拟测量值之间的关系,提出一个关于等效虚拟测量向量的最小化问题,通过凸优化工具箱重构插值后的虚拟阵列协方差矩阵,结合酉变换和总体最小二乘方法进行DOA估计。仿真结果和湖上试验表明,该方法充分利用了非匀虚拟阵列中的所有虚拟阵元,提高了自由度和估计精度,具有有效性。
基金Project(51375430)supported by the National Natural Science Foundation of China
文摘A pneumatic parallel platform driven by an air cylinder and three circumambient pneumatic muscles was considered. Firstly, a mathematical model of the pneumatic servo system was developed for the MIMO nonlinear model-based controller designed. The pneumatic muscles were controlled by three proportional position valves, and the air cylinder was controlled by a proportional pressure valve. As the forward kinematics of this structure had no analytical solution, the control strategy should be designed in joint space. A cross-coupling integral adaptive robust controller(CCIARC) which combined cross-coupling control strategy and traditional adaptive robust control(ARC) theory was developed by back-stepping method to accomplish trajectory tracking control of the parallel platform. The cross-coupling part of the controller stabilized the length error in joint space as well as the synchronization error, and the adaptive robust control part attenuated the adverse effects of modelling error and disturbance. The force character of the pneumatic muscles was difficult to model precisely, so the on-line recursive least square estimation(RLSE) method was employed to modify the model compensation. The projector mapping method was used to condition the RLSE algorithm to bound the parameters estimated. An integral feedback part was added to the traditional robust function to reduce the negative influence of the slow time-varying characteristic of pneumatic muscles and enhance the ability of trajectory tracking. The stability of the controller designed was proved through Laypunov's theory. Various contrast controllers were designed to testify the newly designed components of the CCIARC. Extensive experiments were conducted to illustrate the performance of the controller.
基金Project(61372136) supported by the National Natural Science Foundation of China
文摘The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, where a new term associating with the current measurement information(CMI) was introduced into the expression of the sampled particles. Through the repeated use of the least squares estimate, the CMI can be integrated into the sampling stage in an iterative manner, conducing to the greatly improved sampling quality. By running the IIDF, an iterated PF(IPF) can be obtained. Subsequently, a parallel resampling(PR) was proposed for the purpose of parallel implementation of IPF, whose main idea was the same as systematic resampling(SR) but performed differently. The PR directly used the integral part of the product of the particle weight and particle number as the number of times that a particle was replicated, and it simultaneously eliminated the particles with the smallest weights, which are the two key differences from the SR. The detailed implementation procedures on the graphics processing unit of IPF based on the PR were presented at last. The performance of the IPF, PR and their parallel implementations are illustrated via one-dimensional numerical simulation and practical application of passive radar target tracking.
基金supported by the National Natural Science Foundation of China(11273017)
文摘A new recursive algorithm with the partial parallel structure based on the linearly constrained minimum variance(LCMV)criterion for adaptive monopulse systems is proposed.The weight vector associated with the original whole antenna array is decomposed into several adaptive weight sub-vectors firstly.An adaptive algorithm based on the conventional LCMV principle is then deduced to update the weight sub-vectors for sum and difference beam,respectively.The optimal weight vector can be obtained after convergence.The required computational complexity is evaluated for the proposed technique,which is on the order of O(N)and less than that of the conventional LCMV method.The flow chart scheme with the partial parallel structure of the proposed algorithm is introduced.This scheme is easy to be implemented on a distributed computer/digital signal processor(DSP)system to solve the problems of the heavy computational burden and vast data transmission of the large-scale adaptive monopulse array.Then,the monopulse ratio and convergence rate of the proposed algorithm are evaluated by numerical simulations.Compared with some recent adaptive monopulse estimation methods,a better performance on computational complexity and monopulse ratio can be achieved with the proposed adaptive method.