针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条...针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条件,依据稀疏率和阵元数将孔径自适应分区,以阵列峰值旁瓣和孔径为约束,由双层嵌套循环迭代优化阵列麦克风数量和位置,获得更低的阵列峰值旁瓣电平。数值仿真和实验结果表明,根据该方法获得的49.5λ孔径、23%稀疏率的稀疏阵列峰值旁瓣电平为-21.59 dB,主瓣宽度为1.03°,角度分辨率为1°,估计误差小于0.01。与其他方法对比,峰值旁瓣低1 d B,优化效率提升50%,由此可证明该方法的有效性和快速性。展开更多
为利用互质结构进行二维高精度波达方向(direction of arrival,DOA)估计,设计了双平行互质阵列,提出了构建非均匀虚拟阵列的失配处理贝叶斯学习方法,最大限度扩展了测向自由度的同时,降低了网格失配对DOA估计精度的影响。首先,对平行互...为利用互质结构进行二维高精度波达方向(direction of arrival,DOA)估计,设计了双平行互质阵列,提出了构建非均匀虚拟阵列的失配处理贝叶斯学习方法,最大限度扩展了测向自由度的同时,降低了网格失配对DOA估计精度的影响。首先,对平行互质阵列进行垂直方向扩展构建了双平行互质阵列;其次,进行了非均匀虚拟阵列扩展,利用稀疏贝叶斯学习进行稀疏重构;然后,利用到达角相邻网格的能量关系,通过泰勒展开,进行了低复杂度的失配处理;最后,提出剔除规则和选择规则,融合两个方向子阵的估计结果。理论分析和仿真实验证明了所提阵列和DOA估计方法的有效性。展开更多
文摘针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条件,依据稀疏率和阵元数将孔径自适应分区,以阵列峰值旁瓣和孔径为约束,由双层嵌套循环迭代优化阵列麦克风数量和位置,获得更低的阵列峰值旁瓣电平。数值仿真和实验结果表明,根据该方法获得的49.5λ孔径、23%稀疏率的稀疏阵列峰值旁瓣电平为-21.59 dB,主瓣宽度为1.03°,角度分辨率为1°,估计误差小于0.01。与其他方法对比,峰值旁瓣低1 d B,优化效率提升50%,由此可证明该方法的有效性和快速性。
文摘为利用互质结构进行二维高精度波达方向(direction of arrival,DOA)估计,设计了双平行互质阵列,提出了构建非均匀虚拟阵列的失配处理贝叶斯学习方法,最大限度扩展了测向自由度的同时,降低了网格失配对DOA估计精度的影响。首先,对平行互质阵列进行垂直方向扩展构建了双平行互质阵列;其次,进行了非均匀虚拟阵列扩展,利用稀疏贝叶斯学习进行稀疏重构;然后,利用到达角相邻网格的能量关系,通过泰勒展开,进行了低复杂度的失配处理;最后,提出剔除规则和选择规则,融合两个方向子阵的估计结果。理论分析和仿真实验证明了所提阵列和DOA估计方法的有效性。