In order to obtain direct solutions of parallel manipulator without divergence in real time,a modified global Newton-Raphson(MGNR) algorithm was proposed for forward kinematics analysis of six-degree-of-freedom(DOF) p...In order to obtain direct solutions of parallel manipulator without divergence in real time,a modified global Newton-Raphson(MGNR) algorithm was proposed for forward kinematics analysis of six-degree-of-freedom(DOF) parallel manipulator.Based on geometrical frame of parallel manipulator,the highly nonlinear equations of kinematics were derived using analytical approach.The MGNR algorithm was developed for the nonlinear equations based on Tailor expansion and Newton-Raphson iteration.The procedure of MGNR algorithm was programmed in Matlab/Simulink and compiled to a real-time computer with Microsoft visual studio.NET for implementation.The performance of the MGNR algorithms for 6-DOF parallel manipulator was analyzed and confirmed.Applying the MGNR algorithm,the real generalized pose of moving platform is solved by using the set of given positions of actuators.The theoretical analysis and numerical results indicate that the presented method can achieve the numerical convergent solution in less than 1 ms with high accuracy(1×10-9 m in linear motion and 1×10-9 rad in angular motion),even the initial guess value is far from the root.展开更多
Kinematics and dynamics analyses were performed for a spatial 3-revolute joint-revolute joint-clylindric pair(3-RRC) parallel manipulator.This 3-RRC parallel manipulator is composed of a moving platform,a base platfor...Kinematics and dynamics analyses were performed for a spatial 3-revolute joint-revolute joint-clylindric pair(3-RRC) parallel manipulator.This 3-RRC parallel manipulator is composed of a moving platform,a base platform,and three revolute joint-revolute joint-column pair chains which connect the moving platform and the base platform.Firstly,kinematics analysis for 3-RRC parallel manipulator was conducted.Next,on the basis of Lagrange formula,a simply-structured dynamic model of 3-RRC parallel manipulator was derived.Finally,through a calculation example,the variation of motorial parameters of this 3-RRC parallel manipulator,equivalent moment of inertia,driving force/torque and energy consumption was discussed.The research findings have important significance for research and engineering projects such as analyzing dynamic features,mechanism optimization design and control of 3-RRC parallel manipulator.展开更多
A novel 6-PSS flexible parallel mechanism was presented,which employed wide-range flexure hinges as passive joints.The proposed mechanism features micron level positioning accuracy over cubic centimeter scale workspac...A novel 6-PSS flexible parallel mechanism was presented,which employed wide-range flexure hinges as passive joints.The proposed mechanism features micron level positioning accuracy over cubic centimeter scale workspace.A three-layer back-propagation(BP) neural network was utilized to the kinematics analysis,in which learning samples containing 1 280 groups of data based on stiffness-matrix method were used to train the BP model.The kinematics performance was accurately calculated by using the constructed BP model with 19 hidden nodes.Compared with the stiffness model,the simulation and numerical results validate that BP model can achieve millisecond level computation time and micron level calculation accuracy.The concept and approach outlined can be extended to a variety of applications.展开更多
A novel high-speed parallel kinematic machine (PKM) named Delta-S parallel manipulator is proposed, which consists of a fixed base connected to a moving platform through three limbs with identical topology. Each lim...A novel high-speed parallel kinematic machine (PKM) named Delta-S parallel manipulator is proposed, which consists of a fixed base connected to a moving platform through three limbs with identical topology. Each limb is composed of one driving ann and one follower arm, herein, the latter includes two strings and one middle rod, all located in a same plane. Compared with similar manipulators with uniform parameters, the novel and unique topology as well as the addition of two strings of Delta-S manipulator can remove the clearance of the spherical joints, reduce the inertial load of components further, improve the positioning accuracy and dynamic performance, and so on. In order to formulate the kineto-static model of Delta-S manipulator, the kineto-static analyses and models of the driving arm, the generalized follower and the moving platform can be carried out by the D'ALEMBERT principle. For the sake of obtaining the force analytic results of strings, the deformation compatibility condition of strings and the middle rod are determined. Furthermore, in virtue of the assumption of small deformation and the linear superposition principle, the minimal pre-tightening force of the strings is calculated. The main results include that the loads of the strings and the middle rod must be larger than "zero" and the pre-tightening force over the workspace must be larger than the minimal pre-tightening force at any time within the workspace, which lay the foundation for the dynamic analysis and the prototype manufacture of the Delta-S manipulator.展开更多
In view of the structure of traditional five-coord in ate machine tool, the work-piece and machine tool often move along their respec tive guides simultaneously on the whole. In this kind of machine structure, the tot...In view of the structure of traditional five-coord in ate machine tool, the work-piece and machine tool often move along their respec tive guides simultaneously on the whole. In this kind of machine structure, the total mass of moving parts including work-pieces, fixtures, rotating table, wor king table and so on is often very large. Besides, the elastic reform of transmi ssion and the viscous friction force of the guide can not be ignored. As a resul t, the machine tool can not move with high velocity and acceleration, and can no t meet the needs of modern fast and efficient production. The emergence of virtual-axis machine tool has provided a new approach for the solution of the above problems. The kernel of the virtual-axis machine tool is the parallel mechanism. So far, research of parallel mechanism in the world has achieved many results and various applied equipments based on parallel mecha nism have been worked out, but the research generally focuses on the working spa ce and kinematics analysis, dynamics are rarely considered. To meet the requirements of the modern fast and efficient production, reduce the cost and promote the machine tool’s acceleration character, not only should we analyze the kinematics of machine tool, but also we should study its dynamics a nd optimize the structure on the basis of analysis. In this paper, the kinem atics and dynamics of a 5-DOF (degrees of freedom) machine tool with novel para llel mechanism that has three moving DOF and one rotating DOF are studied by Rob ot-Wittenberg method. The dynamics character of the parallel robotic machine is analyzed and used to guide the structure design of machine tool. At last, the c orrectness is verified through a numerical simulation of 5-DOF. Hence, the dyna mics model can generally solve the problems existing in the parallel and hybrid machine tools. The dynamics character of the parallel robotic machine is studied and analyzed in quantity. The dynamics equation of the system can be written as This is a set of differential equations of four DOF system. Theoretically, the c losed solution of the forward and inverse problems can be gained by solving the above equations. The system equations quite suit to program at the computer. Whe n the forces are given, the state variables’ numerical solution can be gain ed through integral; and when the dynamics parameters are given, the forces can also be solved. But the multiple valued phenomena can not be avoided. We have developed simulation software based on the dynamics model presented by t his paper. The different effects of the structure parameters can be given by numerical simulation.展开更多
基金Project(HgdJG00401D04) supported by National 921 Manned Space Project Foundation of ChinaProject(SKLRS200803B) supported by the Self-Planned Task Foundation of State Key Laboratory of Robotics and System (HIT) of China+1 种基金Project(CDAZ98502211) supported by China’s "World Class University (985)" Project FoundationProject(50975055) supported by the National Natural Science Foundation of China
文摘In order to obtain direct solutions of parallel manipulator without divergence in real time,a modified global Newton-Raphson(MGNR) algorithm was proposed for forward kinematics analysis of six-degree-of-freedom(DOF) parallel manipulator.Based on geometrical frame of parallel manipulator,the highly nonlinear equations of kinematics were derived using analytical approach.The MGNR algorithm was developed for the nonlinear equations based on Tailor expansion and Newton-Raphson iteration.The procedure of MGNR algorithm was programmed in Matlab/Simulink and compiled to a real-time computer with Microsoft visual studio.NET for implementation.The performance of the MGNR algorithms for 6-DOF parallel manipulator was analyzed and confirmed.Applying the MGNR algorithm,the real generalized pose of moving platform is solved by using the set of given positions of actuators.The theoretical analysis and numerical results indicate that the presented method can achieve the numerical convergent solution in less than 1 ms with high accuracy(1×10-9 m in linear motion and 1×10-9 rad in angular motion),even the initial guess value is far from the root.
基金Project(2014QNB18) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2014CBO46300) supported by the National Basic Research Program of China
文摘Kinematics and dynamics analyses were performed for a spatial 3-revolute joint-revolute joint-clylindric pair(3-RRC) parallel manipulator.This 3-RRC parallel manipulator is composed of a moving platform,a base platform,and three revolute joint-revolute joint-column pair chains which connect the moving platform and the base platform.Firstly,kinematics analysis for 3-RRC parallel manipulator was conducted.Next,on the basis of Lagrange formula,a simply-structured dynamic model of 3-RRC parallel manipulator was derived.Finally,through a calculation example,the variation of motorial parameters of this 3-RRC parallel manipulator,equivalent moment of inertia,driving force/torque and energy consumption was discussed.The research findings have important significance for research and engineering projects such as analyzing dynamic features,mechanism optimization design and control of 3-RRC parallel manipulator.
基金Project(2002AA422260) supported by the National High Technology Research and Development Program of ChinaProject(2011-6) supported by CAST-HIT Joint Program,ChinaProject supported by Harbin Institute of Technology (HIT) Overseas Talents Introduction Program,China
文摘A novel 6-PSS flexible parallel mechanism was presented,which employed wide-range flexure hinges as passive joints.The proposed mechanism features micron level positioning accuracy over cubic centimeter scale workspace.A three-layer back-propagation(BP) neural network was utilized to the kinematics analysis,in which learning samples containing 1 280 groups of data based on stiffness-matrix method were used to train the BP model.The kinematics performance was accurately calculated by using the constructed BP model with 19 hidden nodes.Compared with the stiffness model,the simulation and numerical results validate that BP model can achieve millisecond level computation time and micron level calculation accuracy.The concept and approach outlined can be extended to a variety of applications.
基金Projects(50175295,50675151) supported by the National Natural Science Foundation of ChinaProject(11JCZDJC22700) supported by Tianjin Science and Technology Program,ChinaProject(2007AA042001) supported by the National High Technology Research and Development Program of China
文摘A novel high-speed parallel kinematic machine (PKM) named Delta-S parallel manipulator is proposed, which consists of a fixed base connected to a moving platform through three limbs with identical topology. Each limb is composed of one driving ann and one follower arm, herein, the latter includes two strings and one middle rod, all located in a same plane. Compared with similar manipulators with uniform parameters, the novel and unique topology as well as the addition of two strings of Delta-S manipulator can remove the clearance of the spherical joints, reduce the inertial load of components further, improve the positioning accuracy and dynamic performance, and so on. In order to formulate the kineto-static model of Delta-S manipulator, the kineto-static analyses and models of the driving arm, the generalized follower and the moving platform can be carried out by the D'ALEMBERT principle. For the sake of obtaining the force analytic results of strings, the deformation compatibility condition of strings and the middle rod are determined. Furthermore, in virtue of the assumption of small deformation and the linear superposition principle, the minimal pre-tightening force of the strings is calculated. The main results include that the loads of the strings and the middle rod must be larger than "zero" and the pre-tightening force over the workspace must be larger than the minimal pre-tightening force at any time within the workspace, which lay the foundation for the dynamic analysis and the prototype manufacture of the Delta-S manipulator.
文摘In view of the structure of traditional five-coord in ate machine tool, the work-piece and machine tool often move along their respec tive guides simultaneously on the whole. In this kind of machine structure, the total mass of moving parts including work-pieces, fixtures, rotating table, wor king table and so on is often very large. Besides, the elastic reform of transmi ssion and the viscous friction force of the guide can not be ignored. As a resul t, the machine tool can not move with high velocity and acceleration, and can no t meet the needs of modern fast and efficient production. The emergence of virtual-axis machine tool has provided a new approach for the solution of the above problems. The kernel of the virtual-axis machine tool is the parallel mechanism. So far, research of parallel mechanism in the world has achieved many results and various applied equipments based on parallel mecha nism have been worked out, but the research generally focuses on the working spa ce and kinematics analysis, dynamics are rarely considered. To meet the requirements of the modern fast and efficient production, reduce the cost and promote the machine tool’s acceleration character, not only should we analyze the kinematics of machine tool, but also we should study its dynamics a nd optimize the structure on the basis of analysis. In this paper, the kinem atics and dynamics of a 5-DOF (degrees of freedom) machine tool with novel para llel mechanism that has three moving DOF and one rotating DOF are studied by Rob ot-Wittenberg method. The dynamics character of the parallel robotic machine is analyzed and used to guide the structure design of machine tool. At last, the c orrectness is verified through a numerical simulation of 5-DOF. Hence, the dyna mics model can generally solve the problems existing in the parallel and hybrid machine tools. The dynamics character of the parallel robotic machine is studied and analyzed in quantity. The dynamics equation of the system can be written as This is a set of differential equations of four DOF system. Theoretically, the c losed solution of the forward and inverse problems can be gained by solving the above equations. The system equations quite suit to program at the computer. Whe n the forces are given, the state variables’ numerical solution can be gain ed through integral; and when the dynamics parameters are given, the forces can also be solved. But the multiple valued phenomena can not be avoided. We have developed simulation software based on the dynamics model presented by t his paper. The different effects of the structure parameters can be given by numerical simulation.