Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capa...Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capacity.However,channel estimation has become very challenging due to the use of massive MIMO antenna array.Fortunately,the mmWave channel has strong sparsity in the spatial angle domain,and the compressed sensing technology can be used to convert the original channel matrix into the sparse matrix of discrete angle grid.Thus the high-dimensional channel matrix estimation is transformed into a sparse recovery problem with greatly reduced computational complexity.However,the path angle in the actual scene appears randomly and is unlikely to be completely located on the quantization angle grid,thus leading to the problem of power leakage.Moreover,multiple paths with the random distribution of angles will bring about serious interpath interference and further deteriorate the performance of channel estimation.To address these off-grid issues,we propose a parallel interference cancellation assisted multi-grid matching pursuit(PIC-MGMP)algorithm in this paper.The proposed algorithm consists of three stages,including coarse estimation,refined estimation,and inter-path cyclic iterative inter-ference cancellation.More specifically,the angular resolution can be improved by locally refining the grid to reduce power leakage,while the inter-path interference is eliminated by parallel interference cancellation(PIC),and the two together improve the estimation accuracy.Simulation results show that compared with the traditional orthogonal matching pursuit(OMP)algorithm,the normalized mean square error(NMSE)of the proposed algorithm decreases by over 14dB in the case of 2 paths.展开更多
A two-stage soft parallel interference cancellation (SPIC) algorithm in WCDMA system is proposed. The performance of the algorithm is analysed in perfect power control and near-far case, and the influence of the timin...A two-stage soft parallel interference cancellation (SPIC) algorithm in WCDMA system is proposed. The performance of the algorithm is analysed in perfect power control and near-far case, and the influence of the timing error on the system BER is discussed. Analysis and simulation show that the SPIC technique can enhance system capacity, and have a good ability to resist near-far impact. With its simple structure, it has good potential for practical applications.展开更多
Space-time selective parallel interference cancellation(ST-SPIC) is a computationally effective approach combining multiuser detection (MUD) with antenna array technology for CDMA systems. The exploitation of signal r...Space-time selective parallel interference cancellation(ST-SPIC) is a computationally effective approach combining multiuser detection (MUD) with antenna array technology for CDMA systems. The exploitation of signal reliability is a key issue in ST-SPIC. In order to improve the reliability estimation, a pair of reliability thresholds are introduced. Then an improved selective interference cancellation algorithm is proposed to exploit the reliability accordingly. More practical space-time processing algorithms are also incorporated in the proposed ST-SPIC scheme to overcome the limitation caused by some idealised assumptions taken in the original ST-SPIC scheme. Numerical results show that the proposed ST-SPIC scheme outperforms its traditional counterpart in a CDMA microcell environment.展开更多
在多径衰落信道中,基于交错正交幅度调制的正交频分复用(OFDM with Offset QAM,OFDM/OQAM)系统使用迫零均衡器进行信号检测时,不能完全消除信道复数特性和滤波器实数正交特性引入的时域符号间干扰和频域子载波间干扰,及信道估计误差导...在多径衰落信道中,基于交错正交幅度调制的正交频分复用(OFDM with Offset QAM,OFDM/OQAM)系统使用迫零均衡器进行信号检测时,不能完全消除信道复数特性和滤波器实数正交特性引入的时域符号间干扰和频域子载波间干扰,及信道估计误差导致的误码率性能损失。该文利用对数据初始判决并重构相邻载波及符号间干扰的思想,通过分析采用迫零均衡信号检测时的残余干扰与信道估计误差干扰,提出了一种基于并行干扰抵消和迫零均衡器结合的OFDM/OQAM信号检测方法,并在IEEE 802.22技术标准的两种典型多径衰落信道中进行了计算机仿真与比较研究。仿真结果表明,与基于迫零均衡的检测方法相比,基于并行干扰抵消的迭代信号检测方法在误码率为1%时,可获得1 dB至2 dB的性能提升。展开更多
基金supported in part by the Beijing Natural Science Foundation under Grant No.L202003the National Natural Science Foundation of China under Grant U22B2001 and 62271065the Project of China Railway Corporation under Grant N2022G048.
文摘Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capacity.However,channel estimation has become very challenging due to the use of massive MIMO antenna array.Fortunately,the mmWave channel has strong sparsity in the spatial angle domain,and the compressed sensing technology can be used to convert the original channel matrix into the sparse matrix of discrete angle grid.Thus the high-dimensional channel matrix estimation is transformed into a sparse recovery problem with greatly reduced computational complexity.However,the path angle in the actual scene appears randomly and is unlikely to be completely located on the quantization angle grid,thus leading to the problem of power leakage.Moreover,multiple paths with the random distribution of angles will bring about serious interpath interference and further deteriorate the performance of channel estimation.To address these off-grid issues,we propose a parallel interference cancellation assisted multi-grid matching pursuit(PIC-MGMP)algorithm in this paper.The proposed algorithm consists of three stages,including coarse estimation,refined estimation,and inter-path cyclic iterative inter-ference cancellation.More specifically,the angular resolution can be improved by locally refining the grid to reduce power leakage,while the inter-path interference is eliminated by parallel interference cancellation(PIC),and the two together improve the estimation accuracy.Simulation results show that compared with the traditional orthogonal matching pursuit(OMP)algorithm,the normalized mean square error(NMSE)of the proposed algorithm decreases by over 14dB in the case of 2 paths.
文摘A two-stage soft parallel interference cancellation (SPIC) algorithm in WCDMA system is proposed. The performance of the algorithm is analysed in perfect power control and near-far case, and the influence of the timing error on the system BER is discussed. Analysis and simulation show that the SPIC technique can enhance system capacity, and have a good ability to resist near-far impact. With its simple structure, it has good potential for practical applications.
文摘Space-time selective parallel interference cancellation(ST-SPIC) is a computationally effective approach combining multiuser detection (MUD) with antenna array technology for CDMA systems. The exploitation of signal reliability is a key issue in ST-SPIC. In order to improve the reliability estimation, a pair of reliability thresholds are introduced. Then an improved selective interference cancellation algorithm is proposed to exploit the reliability accordingly. More practical space-time processing algorithms are also incorporated in the proposed ST-SPIC scheme to overcome the limitation caused by some idealised assumptions taken in the original ST-SPIC scheme. Numerical results show that the proposed ST-SPIC scheme outperforms its traditional counterpart in a CDMA microcell environment.