期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
负载均衡的FP-growth并行算法研究 被引量:10
1
作者 曾志勇 杨呈智 陶冶 《计算机工程与应用》 CSCD 北大核心 2010年第4期125-126,229,共3页
针对在大数据量频繁模式挖掘的时候,有效地利用空闲的计算资源,提出一种基于FP-growth算法的并行算法。该算法有效地将FP-growth主要的计算部分合理地分配到各个计算节点上,各个节点独立完成挖掘后返回结果,从而缩短总计算时间。实验证... 针对在大数据量频繁模式挖掘的时候,有效地利用空闲的计算资源,提出一种基于FP-growth算法的并行算法。该算法有效地将FP-growth主要的计算部分合理地分配到各个计算节点上,各个节点独立完成挖掘后返回结果,从而缩短总计算时间。实验证明,该算法可以完整高效地挖掘频繁模式,并且实现均衡负载。 展开更多
关键词 数据挖掘 并行算法 FP—growth 频繁模式
在线阅读 下载PDF
云制造环境下并行频繁模式增长算法优化 被引量:5
2
作者 王洁 戴清灏 +1 位作者 曾宇 杨东日 《计算机集成制造系统》 EI CSCD 北大核心 2012年第9期2124-2129,共6页
针对云制造环境下的海量数据挖掘,分析了现有并行频繁模式增长算法的实现和不足。研究了利用键值存储系统对其中的计数和分组部分进行优化。利用键值型数据库存储简单、自动增长且有序的方式,将计数和分组的信息存储在了键值型数据库上... 针对云制造环境下的海量数据挖掘,分析了现有并行频繁模式增长算法的实现和不足。研究了利用键值存储系统对其中的计数和分组部分进行优化。利用键值型数据库存储简单、自动增长且有序的方式,将计数和分组的信息存储在了键值型数据库上。通过减少对分布式文件系统的读写,并将计数过程和排序过程并行化执行,优化后的算法减小了存储节点的网络及内存开销。在真实数据集上,通过实验对比了优化前后算法的性能以及对于文件系统I/O的开销。 展开更多
关键词 云制造 并行频繁模式增长算法 键值存储系统 数据挖掘 算法优化
在线阅读 下载PDF
基于Spark的并行频繁项集挖掘算法 被引量:7
3
作者 毛伊敏 吴斌 +1 位作者 许春冬 张茂省 《计算机集成制造系统》 EI CSCD 北大核心 2023年第4期1267-1283,共17页
针对大数据环境下基于Spark的频繁模式增长(FP-Growth)算法存在创建条件频繁模式树(FP-tree)时空效率低,节点间通信开销大,以及冗余搜索等问题,提出了基于Spark的并行频繁项集挖掘算法(PAFMFI-Spark)。首先,该算法提出非负矩阵分解策略(... 针对大数据环境下基于Spark的频繁模式增长(FP-Growth)算法存在创建条件频繁模式树(FP-tree)时空效率低,节点间通信开销大,以及冗余搜索等问题,提出了基于Spark的并行频繁项集挖掘算法(PAFMFI-Spark)。首先,该算法提出非负矩阵分解策略(SNMF),通过提供支持度计数查询和分解储存支持度计数的矩阵,解决了创建条件FP-tree的时空效率低的问题;其次,提出基于遗传算法的分组策略(GS-GA),均衡分配频繁1项集至各节点,解决了节点间的通信开销大的问题;最后,提出高效缩减树结构策略(ERTSS),缩减FP-tree树结构,解决了冗余搜索的问题。实验结果验证了PAFMFI-Spark算法的可行性以及相较于其他挖掘算法的性能优势,所提算法能有效适应各种数据的频繁项集挖掘。 展开更多
关键词 大数据 Spark框架 并行频繁项集挖掘 频繁模式增长算法 非负矩阵分解
在线阅读 下载PDF
基于分布式协调系统的并行频繁模式增长算法的优化 被引量:1
4
作者 王洁 戴清灏 李环 《计算机科学》 CSCD 北大核心 2012年第3期170-173,共4页
频繁模式挖掘可以发现数据中频繁出现的模式,是关联规则挖掘的重要步骤。并行频繁模式算法将其应用到并行环境中,以对海量数据进行挖掘。在Apache软件基金会的Mahout项目实现的基础上,对计数和排序阶段以及算法的执行顺序提出了新的优... 频繁模式挖掘可以发现数据中频繁出现的模式,是关联规则挖掘的重要步骤。并行频繁模式算法将其应用到并行环境中,以对海量数据进行挖掘。在Apache软件基金会的Mahout项目实现的基础上,对计数和排序阶段以及算法的执行顺序提出了新的优化策略。优化后的设计将计数信息存储在分布式协调系统上,充分地利用了分布式协调系统的高可用性、适宜存储元数据信息的特点。该设计减小了小文件在分布式文件系统(HDFS)上的开销,同时保留了其优点,还能使计数过程和排序过程并行执行,减小了计算节点的内存开销。对比了文件系统I/O的开销,并分析了实现设计中的难点,为未来的工作打下了基础。 展开更多
关键词 频繁模式增长算法 并行数据挖掘 分布式协调系统 性能优化
在线阅读 下载PDF
动车组故障诊断知识挖掘中改进的并行频繁模式增长算法 被引量:4
5
作者 周斌 徐文胜 《计算机集成制造系统》 EI CSCD 北大核心 2016年第10期2450-2457,共8页
针对动车组历史运维数据的知识挖掘问题,从有效利用动车组历史运维数据来指导动车组故障诊断的角度出发,分析了现有并行频繁模式增长算法的实现形式和不足。结合动车组故障诊断的要求,提出利用局部频繁模式树代替全局频繁模式树的数据... 针对动车组历史运维数据的知识挖掘问题,从有效利用动车组历史运维数据来指导动车组故障诊断的角度出发,分析了现有并行频繁模式增长算法的实现形式和不足。结合动车组故障诊断的要求,提出利用局部频繁模式树代替全局频繁模式树的数据挖掘算法。该算法在各主要步骤上均实现了并行处理,优化了局部频繁模式树生成规则,对频繁模式的搜索策略进行了改进。改进后的算法大大提高了关联规则挖掘的效率,挖掘结果很好地保留了故障信息与状态信息之间的关联关系,并合理去除了无效规则。通过对该算法的具体分析与实际测试,表明该算法在动车组故障诊断知识获取过程中具有快速、高效、准确的特点。 展开更多
关键词 故障诊断 动车组 关联规则 并行频繁模式增长算法 局部频繁模式树 MAPREDUCE
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部