In this paper, a class of real-time parallel combined methods (RTPCM) of the digital simulation for a partitioned large system is presented. By means of combination of the parallelism across the system with the parall...In this paper, a class of real-time parallel combined methods (RTPCM) of the digital simulation for a partitioned large system is presented. By means of combination of the parallelism across the system with the parallelism across the method, stiff and non-stiff subsystems are solved in parallel on parallel computer by a parallel Rosenbrock method and a parallel RK method, respectively. Their construction, convergence and numerical stability are discussed, and the digitalsimulation experiments are conducted.展开更多
A class of modified parallel combined methods of real-time numerical simulation are presented for a stiff dynamic system. By combining the parallelism across the system with the parallelism across the method, and rela...A class of modified parallel combined methods of real-time numerical simulation are presented for a stiff dynamic system. By combining the parallelism across the system with the parallelism across the method, and relaxing the dependence of stage value computation on sampling time of input function, a class of modified real-time parallel combined methods are constructed. Stiff and nonstiff subsystems are solved in parallel on a parallel computer by a parallel Rosen-brock method and a parallel RK method, respectively. Their order conditions and convergences are discussed. The numerical simulation experiments show that this class of modified algorithms can get high speed and efficiency.展开更多
In this paper, a 3rd order combination method with three processes and a 4th order combination method with five processes for solving ODEs are discussed. These methods are the Runge-Kutta method combined with a linear...In this paper, a 3rd order combination method with three processes and a 4th order combination method with five processes for solving ODEs are discussed. These methods are the Runge-Kutta method combined with a linear multistep method, which overcomes the defect of the 3rd order parallel Runge-Kutta method discussed in [1].展开更多
文摘In this paper, a class of real-time parallel combined methods (RTPCM) of the digital simulation for a partitioned large system is presented. By means of combination of the parallelism across the system with the parallelism across the method, stiff and non-stiff subsystems are solved in parallel on parallel computer by a parallel Rosenbrock method and a parallel RK method, respectively. Their construction, convergence and numerical stability are discussed, and the digitalsimulation experiments are conducted.
基金This project was supported by the National Natural Science Foundation of China (19871080).
文摘A class of modified parallel combined methods of real-time numerical simulation are presented for a stiff dynamic system. By combining the parallelism across the system with the parallelism across the method, and relaxing the dependence of stage value computation on sampling time of input function, a class of modified real-time parallel combined methods are constructed. Stiff and nonstiff subsystems are solved in parallel on a parallel computer by a parallel Rosen-brock method and a parallel RK method, respectively. Their order conditions and convergences are discussed. The numerical simulation experiments show that this class of modified algorithms can get high speed and efficiency.
文摘In this paper, a 3rd order combination method with three processes and a 4th order combination method with five processes for solving ODEs are discussed. These methods are the Runge-Kutta method combined with a linear multistep method, which overcomes the defect of the 3rd order parallel Runge-Kutta method discussed in [1].