期刊文献+
共找到1,074篇文章
< 1 2 54 >
每页显示 20 50 100
Direct and Indirect Applications of Dielectric Barrier Discharge Plasma to Catalytic Reduction of Nitrogen Oxides from Exhaust Gas 被引量:7
1
作者 YOUNG Sun Mok 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第2期207-212,共6页
Dielectric barrier discharge (DBD) plasma was utilized to oxidize NO contained in the exhaust gas to NO2, ultimately improve the selective catalytic reduction of nitrogen oxides (NOx). In the one case, DBD was cre... Dielectric barrier discharge (DBD) plasma was utilized to oxidize NO contained in the exhaust gas to NO2, ultimately improve the selective catalytic reduction of nitrogen oxides (NOx). In the one case, DBD was created directly in the exhaust gas (direct application), and in the an other case, ozone produced by DBD was injected into the exhaust gas (indirect application). A comparative study between such direct and indirect applications of DBD plasma was made in terms of the NOx removal efficiency and the energy consumption. The NO2 content in the exhaust gas was changed by the voltage applied to the DBD device (for direct application) or by the amount of ozone added to the exhaust gas (for indirect application). In both cases, NO was easily oxidized to NO2, and the change in NO2 content largely affected the NOx removal performance of the catalytic reactor placed downstream, where both NO and NO2 were reduced to N2 in the presence of ammonia as the reducing agent. The experiments were primarily concerned with the effect of reaction temperature on the catalytic NOx reduction at various NO2 contents. The direct and indirect applications of DBD were found to remarkably improve the catalytic NOx reduction, especially at low temperatures. 展开更多
关键词 dielectric barrier discharge OZONE catalytic reduction nitrogen oxides
在线阅读 下载PDF
Catalyst-Packed Non-Thermal Plasma Reactor for Removal of Nitrogen Oxides 被引量:4
2
作者 V.Ravi YoungSunMok +1 位作者 B.S.Rajanikanth Ho-ChulKang 《Plasma Science and Technology》 SCIE EI CAS CSCD 2003年第1期1603-1608,共6页
A single-stage plasma-catalytic reactor in which catalytic materials werepacked was used to remove nitrogen oxides. The packing material was scoria being made of variousmetal oxides including Al_2O_3, MgO, TiO_2, etc.... A single-stage plasma-catalytic reactor in which catalytic materials werepacked was used to remove nitrogen oxides. The packing material was scoria being made of variousmetal oxides including Al_2O_3, MgO, TiO_2, etc. Scoria was able to act not only as dielectricpellets but also as a catalyst in the presence of reducing agent such as ethylene and ammonia.Without plasma discharge, scoria did not work well as a catalyst in the temperature range of 100 ℃to 200 ℃, showing less than 10% of NOx removal efficiency. When plasma is produced inside thereactor, the NOx removal efficiency could be increased to 60% in this temperature range. 展开更多
关键词 plasma CATALYST SCORIA nitrogen oxides REMOVAL
在线阅读 下载PDF
Removal of Nitrogen Oxides in Diesel Engine Exhaust by Plasma Assisted Molecular Sieves 被引量:3
3
作者 B S Rajanikanth, V RaviDept. of High Voltage Engineering, Indian Institute of Science, Bangalore 560012,INDIA 《Plasma Science and Technology》 SCIE EI CAS CSCD 2002年第4期1399-1406,共8页
This paper reports the studies conducted on removal of oxides ofnitrogen (NOx) from diesel engine exhaust using electrical dischargeplasma combined with adsorbing materials such as molecular sieves.This study is being... This paper reports the studies conducted on removal of oxides ofnitrogen (NOx) from diesel engine exhaust using electrical dischargeplasma combined with adsorbing materials such as molecular sieves.This study is being reported for the first time. The exhaust is takenfrom a diesel engine of 6 kW under no load conditions. Thecharacteristic behavior of a pulse energized dielectric barrierdischarge reactor in the diesel exhaust treatment is reported. TheNOx removal was not significant (36/100) when the reactor without anypacking was used. 展开更多
关键词 diesel engine exhaust nitrogen oxides REMOVAL electrical discharge plasma
在线阅读 下载PDF
Simultaneous removal of ethanol, acetaldehyde and nitrogen oxides over V-Pd/γ-Al_2O_3-TiO_2 catalyst
4
作者 Zhe Li Jing Wang Kai He Xia An Wei Huang Kechang Xie 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第2期167-172,共6页
V-Pd/γ-Al2O3-TiO2 catalysts with different vanadium contents were prepared by a combined sol-gel and impregnation method. X-ray diffraction (XRD), N2 adsorption-desorption (BET), X-ray photoelectron spectroscopy ... V-Pd/γ-Al2O3-TiO2 catalysts with different vanadium contents were prepared by a combined sol-gel and impregnation method. X-ray diffraction (XRD), N2 adsorption-desorption (BET), X-ray photoelectron spectroscopy (XPS) and catalytic removal of ethanol, acetaldehyde and nitrogen oxides at low temperature (〈300 ?C) were used to assess the properties of the catalysts. The results showed that the sample with 1wt% vanadium exhibited an excellent catalytic performance for simultaneous removal of ethanol, acetaldehyde and nitrogen oxides. The conversions of ethanol, acetaldehyde and nitrogen oxides at 250 ?C were 100%, 74.4% and 98.7%, respectively. V-Pd/γ-Al2O3-TiO2 catalyst with 1 wt% vanadium showed the largest surface area and higher dispersion of vanadium oxide on the catalyst surface, and possessed a larger mole fraction of V4+ species and unique PdO species on the surface, which can be attributed to the strong synergistic effect among palladium, vanadium and the carriers. The higher activity of V-Pd/γ-Al2O3-TiO2 catalyst is related to the V4+ and Pd2+ species on the surface, which might be favorable for the formation of active sites. 展开更多
关键词 V-Pd/γ-Al2O3-TiO2 simultaneous removal ETHANOL ACETALDEHYDE nitrogen oxides
在线阅读 下载PDF
Selective catalytic oxidation of NO over iron and manganese oxides supported on mesoporous silica 被引量:12
5
作者 Junfeng Zhang Yan Huang Xia Chen 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第3期273-277,共5页
The selective catalytic oxidation (SCO) of NO was studied on a catalyst consisting of iron-manganese oxide supported on mesoporous silica (MPS) with different Mn/Fe ratios. Effects of the amount of manganese and i... The selective catalytic oxidation (SCO) of NO was studied on a catalyst consisting of iron-manganese oxide supported on mesoporous silica (MPS) with different Mn/Fe ratios. Effects of the amount of manganese and iron, oxygen, and calcination temperature on NO conversion were also investigated. It was found that the Mn-Fe/MPS catalyst with a Mn/Fe molar ratio of 1 showed the highest activity at the calcination temperature of 400 °C. The results showed that over this catalyst, NO conversion reached 70% under the condition of 280 °C and a space velocity of 5000 h-1. SO2 and H2O had no adverse impact on the reaction activity when the SCO reaction temperature was above 240 °C. In addition, the SCO activity was suppressed gradually in the presence of SO2 and H2O below 240 °C, and such an effect was reversible after heating treatment. 展开更多
关键词 selective catalytic oxidation of NO nitrogen monoxide mesoporous silica IRON MANGANESE
在线阅读 下载PDF
Nitrogen doped tin oxide nanostructured catalysts for selective electrochemical reduction of carbon dioxide to formate 被引量:4
6
作者 Qiankun Li Zhuo Wang +2 位作者 Miao Zhang Pengfei Hou Peng Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期825-829,共5页
Tin/tin oxide materials are key electrocatalysts for selective conversion of CO;to formate/formic acid.Herein we report a tin oxide material with nitrogen doping by using ammonia treatment at elevated temperature. The... Tin/tin oxide materials are key electrocatalysts for selective conversion of CO;to formate/formic acid.Herein we report a tin oxide material with nitrogen doping by using ammonia treatment at elevated temperature. The N doped material demonstrated enhanced electrocatalytic CO;reduction activity, showing high Faradaic efficiency(90%) for formate at -0.65 V vs. RHE with partial current density of 4 mA/cm;.The catalysis was contributed to increased electron negativity of N atom compared to O atom. Additionally, the N-doped catalyst demonstrates sulfur tolerance with retained formate selectivity. The analysis after electrolysis shows that the catalyst structure partially converts to metallic Sn, and thus the combined Sn/N-SnO;is the key for the active CO;catalysis. 展开更多
关键词 CO2 reduction ELECTROCATALYSIS FORMATE Tin oxide nitrogen doping
在线阅读 下载PDF
Low-temperature synthesis of nitrogen doped carbon nanotubes as promising catalyst support for methanol oxidation 被引量:3
7
作者 Liang Liang Meiling Xiao +3 位作者 Jianbing Zhu Junjie Ge Changpeng Liu Wei Xing 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第1期118-122,共5页
The electrochemical methanol oxidation reaction(MOR) is of paramount importance for direct methanol fuel cell(DMFC) application, where efficient catalysts are required to facilitate the complicated multiple charge tra... The electrochemical methanol oxidation reaction(MOR) is of paramount importance for direct methanol fuel cell(DMFC) application, where efficient catalysts are required to facilitate the complicated multiple charge transfer process. The catalyst support not only determines the dispersion status of the catalysts particles, but also exerts great influence on the electronic structure of the catalysts, thereby altering its intrinsic activity. Herein, we demonstrated that nitrogen atoms, assisted by the pre-treatment of carbon matrix with oxidants, can be easily doped into carbon nanotubes at low temperature. The obtained nitrogen-doped carbon nanotubes can effectively improve the dispersion of the supported platinum nanoparticles and facilitate the MOR by modifying the electronic structure of platinum atoms,through catalyst-support interaction. 展开更多
关键词 METHANOL oxidation Carbon NANOTUBES HYDROTHERMAL method nitrogen DOPING
在线阅读 下载PDF
Nitrogen vacancies enriched Ce-doped Ni_(3)N hierarchical nanosheets triggering highly-efficient urea oxidation reaction in urea-assisted energy-saving electrolysis 被引量:5
8
作者 Meng Li Xiaodong Wu +6 位作者 Kun Liu Yifan Zhang Xuechun Jiang Dongmei Sun Yawen Tang Kai Huang Gengtao Fu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期506-515,I0014,共11页
Urea oxidation reaction (UOR),which has favorable thermodynamic energy barriers compared with oxygen evolution reaction (OER),can provide more cost-effective electrons for the renewable energy systems,but is trapped b... Urea oxidation reaction (UOR),which has favorable thermodynamic energy barriers compared with oxygen evolution reaction (OER),can provide more cost-effective electrons for the renewable energy systems,but is trapped by its sluggish UOR kinetics and intricate reaction intermediates formation/desorption process.Herein,we report a novel and effective electrocatalyst consisting of carbon cloth supported nitrogen vacancies-enriched Ce-doped Ni_(3)N hierarchical nanosheets (Ce-Ni_(3)N @CC) to optimize the flat-footed UOR kinetics,especially the stiff rate-determine CO_(2)desorption step of UOR.Upon the introduction of valance state variable Ce,the resultant nitrogen vacancies enriched Ce-Ni_(3)N @CC exhibits an enhanced UOR performance where the operation voltage requires only 1.31 V to deliver the current density of 10 mA cm^(-2),which is superior to that of Ni_(3)N @CC catalyst (1.36 V) and other counterparts.Density functional theory (DFT) results demonstrate that the incorporation of Ce in Ni_(3)N lowers the formation energy of nitrogen vacancies,resulting in rich nitrogen vacancies in Ce-Ni_(3)N @CC.Moreover,the nitrogen vacancies together with Ce doping optimize the local charge distribution around Ni sites,and balance the adsorption energy of CO_(2)in the rate-determining step (RDS),as well as affect the initial adsorption structure of urea,leading to the superior UOR catalytic performance of Ce-Ni_(3)N @CC.When integrating the Ce-Ni_(3)N catalyst in UOR//HER and UOR//CO_(2)R flow electrolyzer,both of them perform well with low operation voltage and robust long-term stability,proofing that the thermodynamically favorable UOR can act as a suitable substitute anodic reaction compared with that of OER.Our findings here not only provide a novel UOR catalyst but also offer a promising design strategy for the future development of energy-related devices. 展开更多
关键词 Rare earth cerium Nickel nitride nitrogen vacancies Charge redistribution Urea oxidation reaction
在线阅读 下载PDF
Semi-closed synthesis of nitrogen and oxygen Co-doped mesoporous carbon for selective aqueous oxidation 被引量:3
9
作者 Chen Xing Daihui Yang +4 位作者 Yan Zhang Tian Sun Junfei Duan Hussein A.Younus Shiguo Zhang 《Green Energy & Environment》 SCIE EI CSCD 2022年第1期43-52,共10页
Heteroatom-doped meso/micro-porous carbon materials are conventionally produced by harsh carbonization under an inert atmosphere involving specific precursors,hard/soft templates,and heteroatom-containing agents.Herei... Heteroatom-doped meso/micro-porous carbon materials are conventionally produced by harsh carbonization under an inert atmosphere involving specific precursors,hard/soft templates,and heteroatom-containing agents.Herein,we report a facile synthesis of N and O co-doped meso/micro-porous carbon(NOMC)by template-free carbonization of a small-molecule precursor in a semi-closed system.The semi-closed carbonizaiton process yields hydrophilic NOMCs with large surface area in a high yield.The porous structure as well as the elemental composition of NOMCs can be modulated by changing the holding time at a particular temperature.NOMCs as metal-free heterogeneous catalysts can selectively oxidize benzyl alcohol and its derivatives into aldehydes/ketones with>85%conversion in aqueous solution,which is much higher than that of the control sample obtained in tube furnace(21%conversion),mainly due to their high N content,high percentage of pyridinic N,and large surface area.The presence of O-containing moieties also helps to improve the hydrophilicity and dispersion ability of catalysts and thus facilitates the mass transfer process during aqueous oxidation.The NOMC catalysts also dispayed excellent activity for a wide range of substrates with a selectivity of>99%. 展开更多
关键词 Semi-closed carbonization nitrogen and oxygen doping Mesoporous carbon Metal-free catalyst Selective aqueous oxidation
在线阅读 下载PDF
Water Content Effect on Oxides Yield in Gas and Liquid Phase Using DBD Arrays in Mist Spray 被引量:1
10
作者 陈秉岩 朱昌平 +7 位作者 费峻涛 何湘 殷澄 王媛 蒋永锋 陈龙威 高远 韩庆邦 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第1期41-50,共10页
Electric discharge in and in contact with water can accompany ultraviolet(UV)radiation and electron impact, which can generate a large number of active species such as hydroxyl radicals(OH), oxygen radical(O), o... Electric discharge in and in contact with water can accompany ultraviolet(UV)radiation and electron impact, which can generate a large number of active species such as hydroxyl radicals(OH), oxygen radical(O), ozone(O_3) and hydrogen peroxide(H_2O_2). In this paper, a nonthermal plasma processing system was established by means of dielectric barrier discharge(DBD)arrays in water mist spray. The relationship between droplet size and water content was examined,and the effects of the concentrations of oxides in both treated water and gas were investigated under different water content and discharge time. The relative intensity of UV spectra from DBD in water mist was a function of water content. The concentrations of both O_3 and nitrogen dioxide(NO_2) in DBD room decreased with increasing water content. Moreover, the concentrations of H_2O_2, O_3 and nitrogen oxides(NOx) in treated water decreased with increasing water content,and all the ones enhanced after discharge. The experimental results were further analyzed by chemical reaction equations and commented by physical principles as much as possible. At last,the water containing phenol was tested in this system for the concentration from 100 mg/L to9.8 mg/L in a period of 35 min. 展开更多
关键词 dielectric barrier discharge(DBD) water mist spray water content hydrogen peroxide ozone nitrogen oxides
在线阅读 下载PDF
Hollow cobalt oxide nanoparticles embedded in nitrogen-doped carbon nanosheets as an efficient bifunctional catalyst for Zn–air battery 被引量:7
11
作者 Yuhui Tian Li Xu +6 位作者 Jian Bao Junchao Qian Huaneng Su Huaming Li Haidong Gu Cheng Yan Henan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第6期59-66,共8页
Rational design of low-cost, highly electrocatalytic activity, and stable bifunctional electrocatalysts for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) has been a great significant for metal–air... Rational design of low-cost, highly electrocatalytic activity, and stable bifunctional electrocatalysts for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) has been a great significant for metal–air batteries. Herein, an efficient bifunctional electrocatalyst based on hollow cobalt oxide nanoparticles embedded in nitrogen-doped carbon nanosheets(Co/N-Pg) is fabricated for Zn–air batteries. A lowcost biomass peach gum, consisting of carbon, oxygen, and hydrogen without other heteroatoms, was used as carbon source to form carbon matrix hosting hollow cobalt oxide nanoparticles. Meanwhile, the melamine was applied as nitrogen source and template precursor, which can convert to carbon-based template graphitic carbon nitride by polycondensation process. Owing to the unique structure and synergistic effect between hollow cobalt oxide nanoparticles and Co-N-C species, the proposal Co/N-Pg catalyst displays not only prominent bifunctional electrocatalytic activities for ORR and OER, but also excellent durability. Remarkably, the assembled Zn–air battery with Co/N-Pg air electrode exhibited a low discharge-charge voltage gap(0.81 V at 50 mA cm^-2) and high peak power density(119 mW cm^-2) with long-term cycling stability. This work presents an effective approach for engineering transition metal oxides and nitrogen modified carbon nanosheets to boost the performance of bifunctional electrocatalysts for Zn–air battery. 展开更多
关键词 Zn-air batteries OXYGEN reduction REACTION OXYGEN evolution REACTION nitrogen-DOPED carbon NANOSHEETS Cobalt oxides
在线阅读 下载PDF
Nitrogen Removal Performance of Denitrifying Ammonium Oxidation System in Treating Sulfamethoxazole-laden Secondary Wastewater Effluent
12
作者 Liu Chunshuang Li Wei +5 位作者 Duan Weichao Huiyun Zhong Yu Haitong Li Yanze Liu Fang Zhao Chaocheng 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第1期105-110,共6页
In this study,nitrogen removal performance of the denitrifying ammonium oxidation(DAO)process was investigated when treating sulfamethoxazole(SMX)-laden secondary wastewater effluent.The influent SMX concentration sho... In this study,nitrogen removal performance of the denitrifying ammonium oxidation(DAO)process was investigated when treating sulfamethoxazole(SMX)-laden secondary wastewater effluent.The influent SMX concentration showed negligible effect on efficiencies for removal of nitrate and COD.However,the ammonium ions removal rate was moderately reduced,when the influent SMX concentration in wastewater reached 6 mg/L.Total nitrogen removal efficiency remained as high as 76.77%towards the day 158 at the end of experiment.Candidatus_Brocadia and Candidatus_Kuenenia were the functional anammox strains.The unclassified_f__Rhodobacteraceae sp.was predominant heterotrophic denitrifying strain in the studied reactor.The concentrations of soluble extracellular polymeric substances in sludge obviously increased from 16.76 mg/g VSS to 32.31 mg/g VSS,which might protect the nitrogen removal strains from high-concentration SMX.This result provides a theoretical and technical foundation for the application of denitrifying ammonium oxidation process in treating sulfamethoxazole-laden secondary wastewater effluent. 展开更多
关键词 denitrifying ammonium oxidation SULFAMETHOXAZOLE extracellular polymeric substances total nitrogen
在线阅读 下载PDF
Efficient nitric oxide capture and reduction on Ni-loaded CHA zeolites
13
作者 Bin Yue Jianhua Wang +3 位作者 Shanshan Liu Guangjun Wu Bin Qin Landong Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第12期1857-1865,共9页
As a prominent contributor to air pollution,nitric oxide(NO)has emerged as a critical agent causing detrimental environmental and health ramifications.To mitigate emissions and facilitate downstream utilization,adsorp... As a prominent contributor to air pollution,nitric oxide(NO)has emerged as a critical agent causing detrimental environmental and health ramifications.To mitigate emissions and facilitate downstream utilization,adsorption-based techniques offer a compelling approach for direct NO capture from both stationary and mobile sources.In this study,a comprehensive exploration of NO capture under oxygen-lean and oxygenrich conditions was conducted,employing Ni ion-exchanged chabazite(CHA-type)zeolites as the adsorbents.Remarkably,Ni/Na-CHA zeolites,with Ni loadings ranging from 3 to 4 wt%,demonstrate remarkable dynamic uptake capacities and exhibit exceptional NO capture efficiencies(NO-to-Ni ratio)for both oxygen-lean(0.17-0.31 mmol/g,0.32-0.43 of NO/Ni)and oxygen-rich(1.64-1.18 mmol/g)under ambient conditions.An NH3 reduction methodology was designed for the regeneration of absorbents at a relatively low temperature of 673 K.Comprehensive insights into the NO_(x) adsorption mechanism were obtained through temperature-programmed desorption experiments,in situ Fourier transform infrared spectroscopy,and density functional theory calculations.It is unveiled that NO and NO_(2) exhibit propensity to coordinate with Ni^(2+) via N-terminal or O-terminal,yielding thermally stable complexes and metastable species,respectively,while the low-temperature desorption substances are generated in close proximity to Na^(+).This study not only offers micro-level perspectives but imparts crucial insights for the advancement of capture and reduction technologies utilizing precious-metal-free materials. 展开更多
关键词 nitrogen oxides CAPTURE ZEOLITE Lean/rich condition Adsorption mechanism
在线阅读 下载PDF
Cu,N codoped carbon nanosheets encapsulating ultrasmall Cu nanoparticles for enhancing selective 1,2-propanediol oxidation
14
作者 Yonghai Feng Min Yu +2 位作者 Minjia Meng Lei Liu Dewei Rao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期27-35,共9页
In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited... In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited oxygen reduction rate and easy C-C cleavage.Given the high economic feasibility of nonnoble metals,i.e.,Cu,in this work,copper and nitrogen codoped porous carbon nanosheets encapsulating ultrafine Cu nanoparticles(Cu@Cu-N-C)were developed to realize highly selective of PDO oxidation to LA.The carbon-encapsulated ultrasmall Cu^(0)NPs in Cu@Cu-N-C have high PDO dehydrogenation activity while N-coordinated Cu(Cu-N)sites are responsible for the high oxygen reduction efficacy.Therefore,the performance of catalytic PDO conversion to LA is optimized by a proposed pathway of PDO→hydroxylacetone→lactaldehyde→LA.Specifically,the enhanced LA selectivity is 88.5%,and the PDO conversion is up to 75.1%in an O_(2)-pressurized reaction system(1.0 MPa O_(2)),superior to other Cu-based catalysts,while in a milder nonpressurized system(O_(2)flow rate of 100 mL min-1),a remarkable LA selectivity(94.2%)is obtained with 39.8%PDO conversion,2.2 times higher than that of supported Au nanoparticles(1%Au/C).Moreover,carbon encapsulation offers Cu@Cu-N-C with strong leaching resistance for better recycling. 展开更多
关键词 Selective oxidation Copper and nitrogen doped carbon 1 2-PROPANEDIOL Ultrasmall Cu nanoparticles Lactic acid
在线阅读 下载PDF
合成气/氮氧化物的氧化特性实验与反应动力学研究
15
作者 刘昀洋 赵韵 +4 位作者 尤佳俊 殷阁媛 胡二江 黄佐华 包炀阳 《西安交通大学学报》 北大核心 2025年第2期73-83,共11页
为明晰合成气与氮氧化物(NO_(x))之间的相互作用机制,采用高压流动反应器,在623~1273 K温度下,实验分析了不同压力(0.19,1.80 MPa)、不同NO_(x)初始摩尔分数(0,0.0925%,0.185%)工况下,典型煤制合成气掺混NO_(x)的氧化特性。基于6种已有... 为明晰合成气与氮氧化物(NO_(x))之间的相互作用机制,采用高压流动反应器,在623~1273 K温度下,实验分析了不同压力(0.19,1.80 MPa)、不同NO_(x)初始摩尔分数(0,0.0925%,0.185%)工况下,典型煤制合成气掺混NO_(x)的氧化特性。基于6种已有的反应动力学模型开展模拟计算,并结合实验结果和计算得到的反应速率常数,更新了CRECK-2019模型。采用更新后的模型进一步开展反应动力学分析,揭示了合成气/NO_(x)氧化过程的关键反应。研究结果表明:升高压力对合成气的低温氧化存在促进作用,且促进作用随NO_(x)掺混量的增大而增强;掺混NO_(x)对0.19 MPa下合成气的低温氧化无明显影响,而对1.80 MPa下的低温氧化存在促进作用,且对不同压力下的中、高温氧化均存在抑制作用;反应H_(2)+NO_(2)=H+HONO对高压下合成气/NO_(x)的氧化有显著贡献,反应HNO+NO_(2)=HONO+NO、HNO+H=NO+H_(2)和HNO+OH=NO+H_(2)O严重影响着中高温下OH的生成。研究结果可为合成气燃气轮机开发与污染物排放控制提供理论支撑。 展开更多
关键词 合成气 氮氧化物 高压流动反应器 氧化特性 反应动力学模型
在线阅读 下载PDF
循环流化床锅炉纯氨燃烧排放特性模拟
16
作者 杜炳君 蒋苓 +3 位作者 张扬 张海 吕俊复 柯希玮 《动力工程学报》 北大核心 2025年第1期10-18,共9页
基于循环流化床(Circulation Fluidized Bed, CFB)技术的纯氨燃烧有望高效、低成本地解决氨燃烧面临的火焰传播速度低、燃烧稳定性差等问题,从而助力基于可再生能源的无碳燃料的消纳利用。构建了氨燃烧CFB整体数学模型,同时考虑了氨的... 基于循环流化床(Circulation Fluidized Bed, CFB)技术的纯氨燃烧有望高效、低成本地解决氨燃烧面临的火焰传播速度低、燃烧稳定性差等问题,从而助力基于可再生能源的无碳燃料的消纳利用。构建了氨燃烧CFB整体数学模型,同时考虑了氨的均相反应及异相催化反应,探究了纯氨燃烧CFB锅炉的氨逃逸、氮氧化物等排放特性,并分析了床温、过量空气系数、空气分级、燃料分级等运行参数对排放特性的影响。结果表明:直接将常规燃煤CFB锅炉结构与运行策略应用于纯燃氨CFB锅炉会导致较高的氨逃逸与氮氧化物排放体积分数,而适当调整运行参数可以显著改善排放特性。 展开更多
关键词 循环流化床 氨燃烧 排放特性 氮氧化物 无碳燃料
在线阅读 下载PDF
污泥流化床富氧燃烧及污染物排放特性
17
作者 金则陈 卢骏营 +4 位作者 胡维杰 张鹏飞 周智浩 李林 段伦博 《洁净煤技术》 北大核心 2025年第3期157-165,共9页
污泥焚烧处置是实现其减量化和资源化利用的有效手段,富氧燃烧被认为是最有应用前景的CO_(2)捕集技术之一,将污泥焚烧技术和富氧燃烧技术相结合的污泥富氧燃烧技术不仅可以实现污泥的清洁高效处理,还可以实现燃烧中的CO_(2)富集。但针... 污泥焚烧处置是实现其减量化和资源化利用的有效手段,富氧燃烧被认为是最有应用前景的CO_(2)捕集技术之一,将污泥焚烧技术和富氧燃烧技术相结合的污泥富氧燃烧技术不仅可以实现污泥的清洁高效处理,还可以实现燃烧中的CO_(2)富集。但针对污泥流化床富氧燃烧技术的研究尚不充分,富氧燃烧独特的高O_(2)浓度、高浓度CO_(2)气氛会对污泥燃烧及污染物生成转化特性产生不可忽略的影响。在实验室规模的鼓泡流化床反应器上系统考察了O_(2)浓度、床层温度、流化数、污泥粒径和污泥含水率等因素对污泥富氧燃烧特性和氮氧化物排放特性(NO、NO_(2)、N_(2)O)的影响。研究结果表明,相同O_(2)浓度条件下,O_(2)在O_(2)/CO_(2)气氛中扩散速率低于其在O_(2)/N_(2)气氛,污泥颗粒在O_(2)/CO_(2)气氛下的燃烧速率和燃尽特性均弱于其在O_(2)/N_(2)气氛下燃烧;而O_(2)/CO_(2)气氛中燃料氮的转化率低于相同氧浓度的O_(2)/N_(2)燃烧气氛下;随着O_(2)浓度的增加,污泥颗粒的富氧燃烧特性显著改善,但是也导致了更高的NO_(x)排放和燃料氮转化率;污泥含水率的增加可以降低燃尽时间和燃料氮的转化率,床层温度和流化数的增加均可不同程度地降低污泥颗粒的燃尽时间,床层温度和污泥粒径的增加会提高NO_(x)的排放和燃料氮的转化率,但是流化数的增加会明显降低燃料氮的转化。 展开更多
关键词 污泥 流化床 富氧燃烧 燃烧特性 氮氧化物
在线阅读 下载PDF
石墨烯负载磷-氮复合阻燃剂的合成及其在聚乳酸改性中的应用
18
作者 马文静 王瀚文 +4 位作者 徐菲 安世杰 朱志国 王文庆 王锐 《高分子材料科学与工程》 北大核心 2025年第1期43-52,共10页
聚乳酸(PLA)是一种典型的生物降解绿色高分子材料,但其极限氧指数(LOI)仅为20%,高的可燃性限制了其应用安全性。文中以2-羧乙基苯基次磷酸、碳酰胺和还原氧化石墨烯(rGO)为原料合成了一种石墨烯负载磷-氮复合高效阻燃剂(CN-rGO),采用熔... 聚乳酸(PLA)是一种典型的生物降解绿色高分子材料,但其极限氧指数(LOI)仅为20%,高的可燃性限制了其应用安全性。文中以2-羧乙基苯基次磷酸、碳酰胺和还原氧化石墨烯(rGO)为原料合成了一种石墨烯负载磷-氮复合高效阻燃剂(CN-rGO),采用熔融共混法制备了PLA/CN-rGO复合物,对其阻燃性能及其作用机理进行了研究分析。极限氧指数、垂直燃烧等级和锥形量热等测试结果表明,CN-rGO是一种高效阻燃剂,其质量分数为1%时,PLA/CN-rGO的LOI明显提升至37%,达到难燃级别;垂直燃烧等级为V-0级,能够离火自熄;最大热释放速率(PHRR)和总热释放量(THR)分别降低了40.2%和23.1%。机理研究表明,CN-rGO在凝聚相和气相均产生阻燃作用,综合提高了阻燃性能。另外,PLA/CN-rGO的表面电阻达到抗静电性级别,说明CN-rGO具有多功能性。 展开更多
关键词 聚乳酸 还原氧化石墨烯 磷-氮复合阻燃剂 阻燃性能 抗静电性能
在线阅读 下载PDF
傅里叶变换红外光谱法测定氧化亚氮中氮氧化物的研究
19
作者 魏王慧 任逸尘 +4 位作者 刘旺旺 高艳秋 姜阳 于瑞祥 董翊 《低温与特气》 2025年第1期37-40,51,共5页
使用氮中一氧化氮、二氧化氮标准气体,以及氧化亚氮纯气,筛选主成分和杂质成分特征吸收波段,有效解决了氧化亚氮在红外光谱中对一氧化氮和二氧化氮检测的影响。使用动态稀释-傅里叶变换红外光谱法,建立了基于长光程傅里叶变换红外光谱... 使用氮中一氧化氮、二氧化氮标准气体,以及氧化亚氮纯气,筛选主成分和杂质成分特征吸收波段,有效解决了氧化亚氮在红外光谱中对一氧化氮和二氧化氮检测的影响。使用动态稀释-傅里叶变换红外光谱法,建立了基于长光程傅里叶变换红外光谱法检测电子工业用气体氧化亚氮中一氧化氮和二氧化氮的定性、定量分析方法,重复性好,检出限低,检出限分别为0.026×10^(-6)(摩尔分数),0.019×10^(-6)(摩尔分数),远低于电子气体目前产品需求。有效地解决了氮氧化物检测方法单一以及氧化亚氮电子气中氮氧化物检出限不够低的问题。 展开更多
关键词 电子特气 动态稀释 傅里叶变换红外光谱 氮氧化物
在线阅读 下载PDF
低负载量Ru-Cu催化剂的合成及其对氨催化湿式氧化的研究
20
作者 丰丙萧 刘晓峰 +3 位作者 杨东霖 郝李宁 盖恒军 宋红兵 《青岛科技大学学报(自然科学版)》 2025年第1期31-37,43,共8页
采用一锅法合成了Ru-Cu@ZrO_(2)双金属催化剂用于氨的催化湿式氧化。Cu的引入有效改善了贵金属催化剂在氨催化湿式氧化中N_(2)选择性差的问题。这些催化剂采用不同的技术进行表征,表明Ru、Cu团簇均匀分散在ZrO_(2)表面。在反应条件为20... 采用一锅法合成了Ru-Cu@ZrO_(2)双金属催化剂用于氨的催化湿式氧化。Cu的引入有效改善了贵金属催化剂在氨催化湿式氧化中N_(2)选择性差的问题。这些催化剂采用不同的技术进行表征,表明Ru、Cu团簇均匀分散在ZrO_(2)表面。在反应条件为200℃、6 h、2 MPa O_(2)时,Ru_(0.25)Cu_(0.25)@ZrO_(2)催化剂能使氨氮达到100%的转化率和63.5%的N_(2)选择性。Ru与Cu协同催化不仅能够保证较高的氨氮转化率,还在一定程度上提高了N_(2)选择性。催化机理表明:在该催化体系中,NH_(4)^(+)无法与积累的NO_(3)^(-)发生反应生成N_(2),限制了N_(2)选择性的进一步提升。 展开更多
关键词 一锅法 低负载量 Ru-Cu催化剂 催化湿式氧化 氨氮废水
在线阅读 下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部