期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An ensemble learning classifier to discover arsenene catalysts with implanted heteroatoms for hydrogen evolution reaction
1
作者 An Chen Junfei Cai +3 位作者 Zhilong Wang Yanqiang Han Simin Ye Jinjin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期268-276,I0008,共10页
Accurate regulation of two-dimensional materials has become an effective strategy to develop a wide range of catalytic applications.The introduction of heterogeneous components has a significant impact on the performa... Accurate regulation of two-dimensional materials has become an effective strategy to develop a wide range of catalytic applications.The introduction of heterogeneous components has a significant impact on the performance of materials,which makes it difficult to discover and understand the structure-property relationships at the atomic level.Here,we developed a novel and efficient ensemble learning classifier with synthetic minority oversampling technique(SMOTE) to discover all possible arsenene catalysts with implanted heteroatoms for hydrogen evolution reaction(HER).A total of 850 doped arsenenes were collected as a database and 140 modified arsenene materials with different doping atoms and doping sites were identified as promising candidate catalysts for HER,with a machine learning prediction accuracy of 81%.Based on the results of machine learning,we proposed 13 low-cost and easily synthesized two-dimensional Fe-doped arsenene catalytic materials that are expected to contribute to high-efficient HER.The proposed ensemble method achieved high prediction accuracy,but millions of times faster to predict Gibbs free energies and only required a small amount of data.This study indicates that the presented ensemble learning classifier is capable of screening high-efficient catalysts,and can be further extended to predict other two-dimensional catalysts with delicate regulation. 展开更多
关键词 Ensemble learning Implanted heteroatoms Hydrogen evolution reaction Synthetic minority oversampling technique
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部