期刊文献+
共找到792篇文章
< 1 2 40 >
每页显示 20 50 100
Neutron-gamma discrimination method based on blind source separation and machine learning 被引量:5
1
作者 Hanan Arahmane El-Mehdi Hamzaoui +1 位作者 Yann Ben Maissa Rajaa Cherkaoui El Moursli 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第2期70-80,共11页
The discrimination of neutrons from gamma rays in a mixed radiation field is crucial in neutron detection tasks.Several approaches have been proposed to enhance the performance and accuracy of neutron-gamma discrimina... The discrimination of neutrons from gamma rays in a mixed radiation field is crucial in neutron detection tasks.Several approaches have been proposed to enhance the performance and accuracy of neutron-gamma discrimination.However,their performances are often associated with certain factors,such as experimental requirements and resulting mixed signals.The main purpose of this study is to achieve fast and accurate neutron-gamma discrimination without a priori information on the signal to be analyzed,as well as the experimental setup.Here,a novel method is proposed based on two concepts.The first method exploits the power of nonnegative tensor factorization(NTF)as a blind source separation method to extract the original components from the mixture signals recorded at the output of the stilbene scintillator detector.The second one is based on the principles of support vector machine(SVM)to identify and discriminate these components.In addition to these two main methods,we adopted the Mexican-hat function as a continuous wavelet transform to characterize the components extracted using the NTF model.The resulting scalograms are processed as colored images,which are segmented into two distinct classes using the Otsu thresholding method to extract the features of interest of the neutrons and gamma-ray components from the background noise.We subsequently used principal component analysis to select the most significant of these features wich are used in the training and testing datasets for SVM.Bias-variance analysis is used to optimize the SVM model by finding the optimal level of model complexity with the highest possible generalization performance.In this framework,the obtained results have verified a suitable bias–variance trade-off value.We achieved an operational SVM prediction model for neutron-gamma classification with a high true-positive rate.The accuracy and performance of the SVM based on the NTF was evaluated and validated by comparing it to the charge comparison method via figure of merit.The results indicate that the proposed approach has a superior discrimination quality(figure of merit of 2.20). 展开更多
关键词 blind source separation Nonnegative tensor factorization(NTF) Support vector machines(SVM) Continuous wavelets transform(CWT) Otsu thresholding method
在线阅读 下载PDF
Source Recovery in Underdetermined Blind Source Separation Based on Artificial Neural Network 被引量:3
2
作者 Weihong Fu Bin Nong +2 位作者 Xinbiao Zhou Jun Liu Changle Li 《China Communications》 SCIE CSCD 2018年第1期140-154,共15页
We propose a novel source recovery algorithm for underdetermined blind source separation, which can result in better accuracy and lower computational cost. On the basis of the model of underdetermined blind source sep... We propose a novel source recovery algorithm for underdetermined blind source separation, which can result in better accuracy and lower computational cost. On the basis of the model of underdetermined blind source separation, the artificial neural network with single-layer perceptron is introduced into the proposed algorithm. Source signals are regarded as the weight vector of single-layer perceptron, and approximate ι~0-norm is taken into account for output error decision rule of the perceptron, which leads to the sparse recovery. Then the procedure of source recovery is adjusting the weight vector of the perceptron. What's more, the optimal learning factor is calculated and a descent sequence of smoothed parameter is used during iteration, which improves the performance and significantly decreases computational complexity of the proposed algorithm. The simulation results reveal that the algorithm proposed can recover the source signal with high precision, while it requires lower computational cost. 展开更多
关键词 underdetermined blind source separation ι~0-norm artificial neural network sparse reconstruction
在线阅读 下载PDF
Blind source separation of multichannel electroencephalogram based on wavelet transform and ICA 被引量:1
3
作者 游荣义 陈忠 《Chinese Physics B》 SCIE EI CAS CSCD 2005年第11期2176-2180,共5页
Combination of the wavelet transform and independent component analysis (ICA) was employed for blind source separation (BSS) of multichannel electroencephalogram (EEG). After denoising the original signals by di... Combination of the wavelet transform and independent component analysis (ICA) was employed for blind source separation (BSS) of multichannel electroencephalogram (EEG). After denoising the original signals by discrete wavelet transform, high frequency components of some noises and artifacts were removed from the original signals. The denoised signals were reconstructed again for the purpose of ICA, such that the drawback that ICA cannot distinguish noises from source signals can be overcome effectively. The practical processing results showed that this method is an effective way to BSS of multichannel EEG. The method is actually a combination of wavelet transform with adaptive neural network, so it is also useful for BBS of other complex signals. 展开更多
关键词 blind source separation ELECTROENCEPHALOGRAM wavelet transform independent component analysis
在线阅读 下载PDF
New Wavelet Threshold Denoising Method in Noisy Blind Source Separation 被引量:1
4
作者 Xuan-Sen He Tian-Jiao Zhao 《Journal of Electronic Science and Technology》 CAS 2010年第4期356-361,共6页
In general conditions, most blind source separation algorithms are established on noisy-free model and ignore the noise that affects the quality of separated sources. Firstly, this paper introduces an improved natural... In general conditions, most blind source separation algorithms are established on noisy-free model and ignore the noise that affects the quality of separated sources. Firstly, this paper introduces an improved natural gradient algorithm based on bias removal technology to estimate the demixing matrix under noisy environment. Then the discrete wavelet transform technology is applied to the separated signals to further remove noise. In order to improve the separation effect, this paper analyzes the deficiency of hard threshold and soft threshold, and proposes a new wavelet threshold function based on the wavelet decomposition and reconfiguration. The simulations have verified that this method improves the signal noise ratio (SNR) of the separation results and the separation precision. 展开更多
关键词 Bias removal blind source separation gradient algorithm wavelet threshold denoising.
在线阅读 下载PDF
Blind Source Separation based on Time-Frequency Morphological Characteristics for Rigid Acoustic Scattering by Underwater Objects 被引量:1
5
作者 Yang Yang Xiukun Li 《Journal of Marine Science and Application》 CSCD 2016年第2期201-207,共7页
Separation of the components of rigid acoustic scattering by underwater objects is essential in obtaining the structural characteristics of such objects. To overcome the problem of rigid structures appearing to have t... Separation of the components of rigid acoustic scattering by underwater objects is essential in obtaining the structural characteristics of such objects. To overcome the problem of rigid structures appearing to have the same spectral structure in the time domain, time-frequency Blind Source Separation (BSS) can be used in combination with image morphology to separate the rigid scattering components of different objects. Based on a highlight model, the separation of the rigid scattering structure of objects with time-frequency distribution is deduced. Using a morphological filter, different characteristics in a Wigner-Ville Distribution (WVD) observed for single auto term and cross terms can be simplified to remove any cross-term interference. By selecting time and frequency points of the auto terms signal, the accuracy of BSS can be improved. A simulation experimental has been used to analyze the feasibility of the new method, with changing the pulse width of the transmitted signal, the relative amplitude and the time delay parameter. And simulation results show that the new method can not only separate rigid scattering components, but can also separate the components when elastic scattering and rigid scattering exist at the same time. Experimental results confirm that the new method can be used in separating the rigid scattering structure of underwater objects. 展开更多
关键词 underwater object highlight structure rigid scattering components image morphology TIME-FREQUENCY blind source separation
在线阅读 下载PDF
Maximum Likelihood Blind Separation of Convolutively Mixed Discrete Sources
6
作者 辜方林 张杭 朱德生 《China Communications》 SCIE CSCD 2013年第6期60-67,共8页
In this paper,a Maximum Likelihood(ML) approach,implemented by Expectation-Maximization(EM) algorithm,is proposed to blind separation of convolutively mixed discrete sources.In order to carry out the expectation proce... In this paper,a Maximum Likelihood(ML) approach,implemented by Expectation-Maximization(EM) algorithm,is proposed to blind separation of convolutively mixed discrete sources.In order to carry out the expectation procedure of the EM algorithm with a less computational load,the algorithm named Iterative Maximum Likelihood algorithm(IML) is proposed to calculate the likelihood and recover the source signals.An important feature of the ML approach is that it has robust performance in noise environments by treating the covariance matrix of the additive Gaussian noise as a parameter.Another striking feature of the ML approach is that it is possible to separate more sources than sensors by exploiting the finite alphabet property of the sources.Simulation results show that the proposed ML approach works well either in determined mixtures or underdetermined mixtures.Furthermore,the performance of the proposed ML algorithm is close to the performance with perfect knowledge of the channel filters. 展开更多
关键词 blind source separation convolutive mixture EM Finite Alphabet
在线阅读 下载PDF
A blind source separation algorithm based on negentropy and signal noise ratio
7
作者 万俊 《Journal of Chongqing University》 CAS 2012年第3期134-140,共7页
A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) al... A novel blind source separation (BSS) algorithm based on the combination of negentropy and signal noise ratio (SNR) is presented to solve the deficiency of the traditional independent component analysis (ICA) algorithm after the introduction of the principle and algorithm of ICA. The main formulas in the novel algorithm are elaborated and the idiographic steps of the algorithm are given. Then the computer simulation is used to test the performance of this algorithm. Both the traditional FastlCA algorithm and the novel ICA algorithm are applied to separate mixed signal data. Experiment results show the novel method has a better performance in separating signals than the traditional FastlCA algorithm based on negentropy. The novel algorithm could estimate the source signals from the mixed signals more precisely. 展开更多
关键词 blind source separation independent component analysis NEGENTROPY signal noise ratio
在线阅读 下载PDF
For LEO Satellite Networks: Intelligent Interference Sensing and Signal Reconstruction Based on Blind Separation Technology 被引量:1
8
作者 Chengjie Li Lidong Zhu Zhen Zhang 《China Communications》 SCIE CSCD 2024年第2期85-95,共11页
In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signal... In LEO satellite communication networks,the number of satellites has increased sharply, the relative velocity of satellites is very fast, then electronic signal aliasing occurs from time to time. Those aliasing signals make the receiving ability of the signal receiver worse, the signal processing ability weaker,and the anti-interference ability of the communication system lower. Aiming at the above problems, to save communication resources and improve communication efficiency, and considering the irregularity of interference signals, the underdetermined blind separation technology can effectively deal with the problem of interference sensing and signal reconstruction in this scenario. In order to improve the stability of source signal separation and the security of information transmission, a greedy optimization algorithm can be executed. At the same time, to improve network information transmission efficiency and prevent algorithms from getting trapped in local optima, delete low-energy points during each iteration process. Ultimately, simulation experiments validate that the algorithm presented in this paper enhances both the transmission efficiency of the network transmission system and the security of the communication system, achieving the process of interference sensing and signal reconstruction in the LEO satellite communication system. 展开更多
关键词 blind source separation greedy optimization algorithm interference sensing LEO satellite communication networks signal reconstruction
在线阅读 下载PDF
Initialization for NMF-Based Audio Source Separation Using Priors on Encoding Vectors 被引量:2
9
作者 Jaeuk Byun Jong Won Shin 《China Communications》 SCIE CSCD 2019年第9期177-186,共10页
Nonnegative matrix factorization(NMF)has shown good performances on blind audio source separation(BASS).While the NMF analysis is a non-convex optimization problem when both the basis and encoding matrices need to be ... Nonnegative matrix factorization(NMF)has shown good performances on blind audio source separation(BASS).While the NMF analysis is a non-convex optimization problem when both the basis and encoding matrices need to be estimated simultaneously,the source separation step of the NMF-based BASS with a fixed basis matrix has been considered convex.However,because the basis matrix for the BASS is typically constructed by concatenating the basis matrices trained with individual source signals,the subspace spanned by the basis vectors for one source may overlap with that for other sources.In this paper,we have shown that the resulting encoding vector is not unique when the subspaces spanned by basis vectors for the sources overlap,which implies that the initialization of the encoding vector in the source separation stage is not trivial.Furthermore,we propose a novel method to initialize the encoding vector for the separation step based on the prior model of the encoding vector.Experimental results showed that the proposed method outperformed the uniform random initialization by 1.09 and 2.21dB in the source-to-distortion ratio,and 0.20 and 0.23 in PESQ scores for supervised and semi-supervised cases,respectively. 展开更多
关键词 blind AUDIO source separation NONNEGATIVE matrix FACTORIZATION speech enhancement
在线阅读 下载PDF
Robust Blind Separation for MIMO Systems against Channel Mismatch Using Second-Order Cone Programming 被引量:1
10
作者 Zhongqiang Luo Chengjie Li Lidong Zhu 《China Communications》 SCIE CSCD 2017年第6期168-178,共11页
To improve the deteriorated capacity gain and source recovery performance due to channel mismatch problem,this paper reports a research about blind separation method against channel mismatch in multiple-input multiple... To improve the deteriorated capacity gain and source recovery performance due to channel mismatch problem,this paper reports a research about blind separation method against channel mismatch in multiple-input multiple-output(MIMO) systems.The channel mismatch problem can be described as a channel with bounded fluctuant errors due to channel distortion or channel estimation errors.The problem of blind signal separation/extraction with channel mismatch is formulated as a cost function of blind source separation(BSS) subject to the second-order cone constraint,which can be called as second-order cone programing optimization problem.Then the resulting cost function is solved by approximate negentropy maximization using quasi-Newton iterative methods for blind separation/extraction source signals.Theoretical analysis demonstrates that the proposed algorithm has low computational complexity and improved performance advantages.Simulation results verify that the capacity gain and bit error rate(BER) performance of the proposed blind separation method is superior to those of the existing methods in MIMO systems with channel mismatch problem. 展开更多
关键词 multiple-input multiple-output channel mismatch second-order cone programming blind source separation independent component analysis
在线阅读 下载PDF
多谱自适应小波和盲源分离耦合的生理信号降噪方法
11
作者 王振宇 向泽锐 +2 位作者 支锦亦 丁铁成 邹瑞 《北京航空航天大学学报》 北大核心 2025年第3期910-921,共12页
为提高生理信号的质量和可靠性,将盲源分离和小波阈值方法进行耦合研究,提出了多谱自适应小波信号增强方法并与改进的盲源分离方法相结合进行降噪处理。为评估所提方法的有效性,使用小波变换中软阈值、硬阈值、自适应阈值3种方法计算信... 为提高生理信号的质量和可靠性,将盲源分离和小波阈值方法进行耦合研究,提出了多谱自适应小波信号增强方法并与改进的盲源分离方法相结合进行降噪处理。为评估所提方法的有效性,使用小波变换中软阈值、硬阈值、自适应阈值3种方法计算信噪比(SNR)和均方根误差(RMSE)。结果表明:所提方法在软阈值下具有较强的适用性,增强后的信号软阈值相比硬阈值,SNR提升约44.2%,RMSE下降约28.8%,处理时间减少约1.4%。软阈值相比自适应阈值,SNR提升约706%,RMSE下降约16.7%,处理时间减少约3.0%。为对比软阈值下各参数差异,使用软阈值对原始信号、加噪信号和增强信号进行对比分析及归一化处理。结果显示增强后的信号具有较好的SNR、较低的RMSE和较短的处理时间,软阈值下增强后的信号与原始信号相比,SNR提升约0.12%,RMSE下降约2.5%,处理时间减少约3.9%,进一步验证了所提方法的有效性,并提高了信号质量。 展开更多
关键词 多谱自适应小波 盲源分离 小波变换 降噪方法 生理信号
在线阅读 下载PDF
基于盲源分离的多人呼吸信号检测方法
12
作者 杨轩 王子颖 +2 位作者 张力 赵恒 洪弘 《雷达学报(中英文)》 北大核心 2025年第1期117-134,共18页
近年来,人们越来越关注多人环境下的呼吸监测,以及如何同时监测多人的健康状态。在多人呼吸检测的算法中,盲源分离算法因其无需先验信息并且对硬件性能依赖性较小而备受研究者关注。然而,在多人呼吸监测场景中,目前的盲源分离算法通常... 近年来,人们越来越关注多人环境下的呼吸监测,以及如何同时监测多人的健康状态。在多人呼吸检测的算法中,盲源分离算法因其无需先验信息并且对硬件性能依赖性较小而备受研究者关注。然而,在多人呼吸监测场景中,目前的盲源分离算法通常将相位信号作为源信号进行分离,该文引入FMCW雷达下距离维信号和相位信号的对比,推导出相位信号作为源信号存在近似误差,并通过仿真验证距离维信号作为源信号时分离效果更好。另外,该文提出了基于非圆复数独立成分分析的多人呼吸信号分离算法,分析了不同呼吸信号参数对分离效果的影响,仿真和实测实验表明,所提出的方法适用于天线个数不小于目标个数时多人呼吸信号的检测,并且在目标角度差为9.46°时,也能够准确分离呼吸信号。 展开更多
关键词 非接触呼吸检测 FMCW雷达 多人呼吸检测 盲源分离 复数独立成分分析
在线阅读 下载PDF
基于SVMD-IDBOICA的单通道旋翼声信号分离研究
13
作者 徐超逸 刘正江 《直升机技术》 2025年第1期24-30,共7页
针对在风洞试验室采集到的旋翼声信号会夹杂电机、减速器等中高频干扰信号的问题,开展单通道旋翼声信号分离研究。为在保留旋翼本征气动噪声信息的同时剔除中高频干扰信号,提出连续变分模态分解(SVMD)与基于改进蜣螂算法的独立分量分析(... 针对在风洞试验室采集到的旋翼声信号会夹杂电机、减速器等中高频干扰信号的问题,开展单通道旋翼声信号分离研究。为在保留旋翼本征气动噪声信息的同时剔除中高频干扰信号,提出连续变分模态分解(SVMD)与基于改进蜣螂算法的独立分量分析(IDBOICA)相结合的盲源分离方法。首先为提高蜣螂算法的寻优性能与收敛速度,利用Logistic-Tent混沌映射与t-分布扰动变异来改进算法;然后以峭度为目标函数,将改进蜣螂算法应用于独立分量分析(ICA)的优化算法中,以改善ICA的分离性能;最后联合SVMD和IDBOICA算法(SVMD-IDBOICA)对含噪声信号进行分离。仿真试验结果表明,使用该算法分离后的目标本征信号与仿真信号相似系数在0.96以上,信噪比明显提升,且效果优于SVMD-FastICA和SVMD-DBOICA。风洞试验旋翼声信号分析应用表明,SVMD-IDBOICA分离算法能够较好地分离并剔除中高频干扰信号,进一步验证了算法的有效性。 展开更多
关键词 连续变分模态分解 改进蜣螂优化算法 旋翼声信号 盲源分离
在线阅读 下载PDF
Independent Component Analysis Based Blind Adaptive Interference Reduction and Symbol Recovery for OFDM Systems 被引量:4
14
作者 LUO Zhongqiang ZHU Lidong LI Chengjie 《China Communications》 SCIE CSCD 2016年第2期41-54,共14页
To overcome the inter-carrier interference (ICI) of orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) and multipath, this paper develops a blind adaptive... To overcome the inter-carrier interference (ICI) of orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) and multipath, this paper develops a blind adaptive interference suppression scheme based on independent component analysis (ICA). Taking into account statistical independence of subcarriers' signals of OFDM, the signal recovery mechanism is investigated to achieve the goal of blind equalization. The received OFDM signals can be considered as the mixed observation signals. The effect of CFO and multipath corresponds to the mixing matrix in the problem of blind source separation (BSS) framework. In this paper, the ICA- based OFDM system model is built, and the proposed ICA-based detector is exploited to extract source signals from the observation of a received mixture based on the assumption of statistical independence between the sources. The blind separation technique can increase spectral efficiency and provide robustness performance against erroneous parameter estimation problem. Theoretical analysis and simulation results show that compared with the conventional pilot-based scheme, the improved performance of OFDM systems is obtained by the proposed ICA-based detection technique. 展开更多
关键词 orthogonal frequency divisionmultiplexing (OFDM) blind source separation(BSS) independent component analysis (ICA) blind interference suppression symbol recovery
在线阅读 下载PDF
Independent Vector Analysis Based Blind Interference Reduction and Signal Recovery for MIMO IoT Green Communications
15
作者 Zhongqiang Luo Mingchun Li Chengjie Li 《China Communications》 SCIE CSCD 2022年第7期79-88,共10页
In application to time convolutive mixing model or frequency domain blind separation model for wireless receiving applications,frequency domain independent component analysis(FDICA)has been a very popular method but w... In application to time convolutive mixing model or frequency domain blind separation model for wireless receiving applications,frequency domain independent component analysis(FDICA)has been a very popular method but with adverse random permutation ambiguity influence.In order to solve this inherent problem in FDICA assisted multiple-input multiple-output orthogonal frequency-division multiplexing(MIMO-OFDM)based the Internet of Thing(IoT)systems,this paper proposes an new detection mechanism,named independent vector analysis(IVA),for realizing blind adaptive signal recovery in MIMO IoT green communication to reduce inter-carrier interference(ICI)and multiple access interference(MAI).IVA jointly implements separation work for different frequency bin data while the FDICA deals with it separately.In IVA,the dependencies of frequency bins can be exploited in mitigating the random permutation problem.In addition,multivariate prior distributions are employed to preserve the inter-frequency dependencies for individual sources,which can result in separation performance enhancement.Simulation results and analysis corroborate the effectiveness of the proposed method. 展开更多
关键词 independent vector analysis blind source separation MIMO green communications
在线阅读 下载PDF
基于稀疏编码的复杂机械振动信号盲分离方法 被引量:3
16
作者 王金东 王畅 +3 位作者 赵海洋 李彦阳 曹威龙 黄飞虎 《噪声与振动控制》 CSCD 北大核心 2024年第1期168-173,186,共7页
复杂机械振动信号激励源较多,故源信号之间互为相关源,且较难满足统计独立特性,导致传统盲源分离方法分离效果不佳。对此,提出一种基于信号稀疏编码的机械振动信号盲分离方法。盲源分离的关键在于对混合矩阵的精确估计,然而机械振源中... 复杂机械振动信号激励源较多,故源信号之间互为相关源,且较难满足统计独立特性,导致传统盲源分离方法分离效果不佳。对此,提出一种基于信号稀疏编码的机械振动信号盲分离方法。盲源分离的关键在于对混合矩阵的精确估计,然而机械振源中相关成分的存在严重影响混合矩阵的估计。对此,首先对观测信号进行短时傅里叶变换,增加信号稀疏性;然后利用稀疏编码筛选出具备直线聚类特性的时频观测点,利用K均值(K-means)聚类法找到聚类中心;最后利用所提筛选规则找到估计的混合矩阵,重构出源信号。通过对往复压缩机故障数据的分析,验证了所提方法有效性。 展开更多
关键词 振动与波 盲源分离 相关源 稀疏编码 直线聚类 压缩机故障信号
在线阅读 下载PDF
动态变化混叠模型下盲源分离中的源数估计 被引量:1
17
作者 白琳 温媛媛 李栋 《电讯技术》 北大核心 2024年第3期396-401,共6页
在进行欠定盲分离时,特别是对于源信号数目及混合矩阵动态变化的情况,常规的欠定盲分离及源数估计方法不能对源信号数目的变化时刻做出判断,因此很难实现动态变化的源信号数目实时和准确的估计。针对这个问题,提出了一种动态变化混叠模... 在进行欠定盲分离时,特别是对于源信号数目及混合矩阵动态变化的情况,常规的欠定盲分离及源数估计方法不能对源信号数目的变化时刻做出判断,因此很难实现动态变化的源信号数目实时和准确的估计。针对这个问题,提出了一种动态变化混叠模型下欠定盲源分离中的源数估计方法。首先,建立动态变化混叠情形下盲源分离的数学模型及动态标识矩阵。其次,基于构建的动态标识矩阵统计和判断动态源信号数目的变化情况。最后,通过分段时间内多维观测矢量采样点聚类区间局部峰值统计,实现动态变化混叠模型下盲源分离中的源信号数目的有效估计。仿真结果表明,该方法能有效实现动态变化混叠模型下欠定盲源分离中的源数估计,并且信号估计效果良好。 展开更多
关键词 欠定盲源分离 源数估计 标识矩阵
在线阅读 下载PDF
Blind 2-D Angles of Arrival Estimation for Distributed Signals Using L-Shaped Arrays
18
作者 Yi Zheng Xue-Gang Wang Tie-Qi Xia Qun Wan 《Journal of Electronic Science and Technology of China》 2008年第1期83-86,共4页
Most existing two dimensional(2-D)angles of arrival(AOAs)estimation methods are based on the assumption that the signal sources are point sources.However,in mobile communications,local scattering in the vicinity o... Most existing two dimensional(2-D)angles of arrival(AOAs)estimation methods are based on the assumption that the signal sources are point sources.However,in mobile communications,local scattering in the vicinity of the mobile results in angular spreading as seen from a base station antenna array.In this paper,we consider the problem of estimating the 2-D AOAs of spatially distributed sources.First we perform blind estimation of the steering vectors by exploiting joint diagonalization,then the 2-D AOAs are obtained through two fast Fourier transforming of the estimated steering vectors.Simulations are carried out to illustrate the performance of the method. 展开更多
关键词 Angles of arrival blind source separation distributed source Fourier transform.
在线阅读 下载PDF
基于二阶统计特性的方向向量估计算法的DOA估计 被引量:1
19
作者 侯进 盛尧宝 张波 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第2期697-704,共8页
为了减小天线阵流形误差对波达方向(DOA)估计结果的影响,以及克服基于传统盲源分离算法的DOA估计算法不能应用于少通道测向设备的不足,提出一种基于2阶统计特性的方向向量估计算法的DOA估计算法。首先,根据确定性最大似然(DML)估计算法... 为了减小天线阵流形误差对波达方向(DOA)估计结果的影响,以及克服基于传统盲源分离算法的DOA估计算法不能应用于少通道测向设备的不足,提出一种基于2阶统计特性的方向向量估计算法的DOA估计算法。首先,根据确定性最大似然(DML)估计算法谱函数的特征,构造关于协方差矩阵的酉约束下的优化问题;然后,通过优化该问题获得各个单信号的实际方向向量;最后,将各个单信号的实际方向向量输入到空间谱算法中实现DOA估计。由于将多信号的DOA估计转化为多个单信号的DOA估计,因此在天线阵列流形存在误差时,所提算法比传统的DOA方法具有更好的DOA估计性能。由于所提算法仅需使用协方差矩阵,因此所提算法可应用于少通道测向设备。由仿真实验结果可知,在阵列流形存在误差以及测向设备为少通道测向设备时,与传统DOA方法相比,所提算法的DOA估计的准确度、抗扰度以及分辨率更高。 展开更多
关键词 DOA估计 天线阵列流形误差 盲源分离 酉约束
在线阅读 下载PDF
基于盲源分离和机器学习的光伏并网逆变器故障诊断 被引量:1
20
作者 张磊 《重庆科技学院学报(自然科学版)》 CAS 2024年第3期99-104,共6页
针对光伏并网逆变器单个开关管发生开路故障不易察觉的问题,提出了一种基于盲源分离和机器学习的诊断方法。首先,采用FastICA算法实现单个开关管开路故障的判定;其次,提取旋转电流在时域和频域下的特征值;最后,以旋转电流特征值为输入... 针对光伏并网逆变器单个开关管发生开路故障不易察觉的问题,提出了一种基于盲源分离和机器学习的诊断方法。首先,采用FastICA算法实现单个开关管开路故障的判定;其次,提取旋转电流在时域和频域下的特征值;最后,以旋转电流特征值为输入、逆变器工作状态编码为输出进行机器学习模型训练,并对模型进行交叉验证。仿真实验结果表明,该方法的开路故障诊断准确率较高。 展开更多
关键词 光伏并网逆变器 单管开路故障 盲源分离 机器学习
在线阅读 下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部