An adaptive neural network output-feedback regulation approach is proposed for a class of multi-input-multi-output nonlinear time-varying delayed systems.Both the designed observer and controller are free from time de...An adaptive neural network output-feedback regulation approach is proposed for a class of multi-input-multi-output nonlinear time-varying delayed systems.Both the designed observer and controller are free from time delays.Different from the existing results,this paper need not the assumption that the upper bounding functions of time-delay terms are known,and only a neural network is employed to compensate for all the upper bounding functions of time-delay terms,so the designed controller procedure is more simplified.In addition,the resulting closed-loop system is proved to be semi-globally ultimately uniformly bounded,and the output regulation error converges to a small residual set around the origin.Two simulation examples are provided to verify the effectiveness of control scheme.展开更多
For the first time, an adaptive backstepping neural network control approach is extended to a class of stochastic non- linear output-feedback systems. Different from the existing results, the nonlinear terms are assum...For the first time, an adaptive backstepping neural network control approach is extended to a class of stochastic non- linear output-feedback systems. Different from the existing results, the nonlinear terms are assumed to be completely unknown and only a neural network is employed to compensate for all unknown nonlinear functions so that the controller design is more simplified. Based on stochastic LaSalle theorem, the resulted closed-loop system is proved to be globally asymptotically stable in probability. The simulation results further verify the effectiveness of the control scheme.展开更多
Lookup table is widely used in automotive industry for the design of engine control units(ECU).Together with a proportional-integral controller,a feed-forward and feedback control scheme is often adopted for automotiv...Lookup table is widely used in automotive industry for the design of engine control units(ECU).Together with a proportional-integral controller,a feed-forward and feedback control scheme is often adopted for automotive engine management system(EMS).Usually,an ECU has a structure of multi-input and single-output(MISO).Therefore,if there are multiple objectives proposed in EMS,there would be corresponding numbers of ECUs that need to be designed.In this situation,huge efforts and time were spent on calibration.In this work,a multi-input and multi-out(MIMO) approach based on model predictive control(MPC) was presented for the automatic cruise system of automotive engine.The results show that the tracking of engine speed command and the regulation of air/fuel ratio(AFR) can be achieved simultaneously under the new scheme.The mean absolute error(MAE) for engine speed control is 0.037,and the MAE for air fuel ratio is 0.069.展开更多
为应对大规模多输入多输出(Multiple⁃input multiple⁃output,MIMO)系统中信道状态信息(Channel state information,CSI)反馈开销的日益增长,基于深度学习的CSI反馈网络(如Transformer网络)受到了广泛的关注,是一种非常有应用前景的智能...为应对大规模多输入多输出(Multiple⁃input multiple⁃output,MIMO)系统中信道状态信息(Channel state information,CSI)反馈开销的日益增长,基于深度学习的CSI反馈网络(如Transformer网络)受到了广泛的关注,是一种非常有应用前景的智能传输技术。为此,本文提出了一种基于数据聚类的CSI反馈Transformer网络的简化方法,采用基于聚类的近似矩阵乘法(Approximate matrix multiplication,AMM)技术,以降低反馈过程中Transformer网络的计算复杂度。本文主要对Transformer网络的全连接层计算(等效为矩阵乘法),应用乘积量化(Product quantization,PQ)和MADDNESS等简化方法,分析了它们对计算复杂度和系统性能的影响,并针对神经网络数据的特点进行了算法优化。仿真结果表明,在适当的参数调整下,基于MADDNESS方法的CSI反馈网络性能接近精确矩阵乘法方法,同时可大幅降低计算复杂度。展开更多
基金supported by the National Natural Science Foundation of China (60804021)the Fundamental Research Funds for the Central Universities (JY10000970001)
文摘An adaptive neural network output-feedback regulation approach is proposed for a class of multi-input-multi-output nonlinear time-varying delayed systems.Both the designed observer and controller are free from time delays.Different from the existing results,this paper need not the assumption that the upper bounding functions of time-delay terms are known,and only a neural network is employed to compensate for all the upper bounding functions of time-delay terms,so the designed controller procedure is more simplified.In addition,the resulting closed-loop system is proved to be semi-globally ultimately uniformly bounded,and the output regulation error converges to a small residual set around the origin.Two simulation examples are provided to verify the effectiveness of control scheme.
基金supported by the National Natural Science Foundation of China (60804021)
文摘For the first time, an adaptive backstepping neural network control approach is extended to a class of stochastic non- linear output-feedback systems. Different from the existing results, the nonlinear terms are assumed to be completely unknown and only a neural network is employed to compensate for all unknown nonlinear functions so that the controller design is more simplified. Based on stochastic LaSalle theorem, the resulted closed-loop system is proved to be globally asymptotically stable in probability. The simulation results further verify the effectiveness of the control scheme.
基金Project supported by the Centre for Smart Grid and Information Convergence(CeSGIC)at Xi’an Jiaotong-Liverpool University,China
文摘Lookup table is widely used in automotive industry for the design of engine control units(ECU).Together with a proportional-integral controller,a feed-forward and feedback control scheme is often adopted for automotive engine management system(EMS).Usually,an ECU has a structure of multi-input and single-output(MISO).Therefore,if there are multiple objectives proposed in EMS,there would be corresponding numbers of ECUs that need to be designed.In this situation,huge efforts and time were spent on calibration.In this work,a multi-input and multi-out(MIMO) approach based on model predictive control(MPC) was presented for the automatic cruise system of automotive engine.The results show that the tracking of engine speed command and the regulation of air/fuel ratio(AFR) can be achieved simultaneously under the new scheme.The mean absolute error(MAE) for engine speed control is 0.037,and the MAE for air fuel ratio is 0.069.