期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Coherence-based performance analysis of the generalized orthogonal matching pursuit algorithm
1
作者 赵娟 毕诗合 +2 位作者 白霞 唐恒滢 王豪 《Journal of Beijing Institute of Technology》 EI CAS 2015年第3期369-374,共6页
The performance guarantees of generalized orthogonal matching pursuit( gOMP) are considered in the framework of mutual coherence. The gOMP algorithmis an extension of the well-known OMP greed algorithmfor compressed... The performance guarantees of generalized orthogonal matching pursuit( gOMP) are considered in the framework of mutual coherence. The gOMP algorithmis an extension of the well-known OMP greed algorithmfor compressed sensing. It identifies multiple N indices per iteration to reconstruct sparse signals.The gOMP with N≥2 can perfectly reconstruct any K-sparse signals frommeasurement y = Φx if K 〈1/N(1/μ-1) +1,where μ is coherence parameter of measurement matrix Φ. Furthermore,the performance of the gOMP in the case of y = Φx + e with bounded noise ‖e‖2≤ε is analyzed and the sufficient condition ensuring identification of correct indices of sparse signals via the gOMP is derived,i. e.,K 〈1/N(1/μ-1)+1-(2ε/Nμxmin) ,where x min denotes the minimummagnitude of the nonzero elements of x. Similarly,the sufficient condition in the case of G aussian noise is also given. 展开更多
关键词 compressed sensing sparse signal reconstruction orthogonal matching pursuit(OMP) support recovery coherence
在线阅读 下载PDF
Root imaging from ground penetrating radar data by CPSO-OMP compressed sensing 被引量:4
2
作者 Chao Li Yaowen Su +1 位作者 Yizhuo Zhang Huimin Yang 《Journal of Forestry Research》 SCIE CAS CSCD 2017年第1期155-162,共8页
As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algor... As the amount of data produced by ground penetrating radar (GPR) for roots is large, the transmission and the storage of data consumes great resources. To alleviate this problem, we propose here a root imaging algorithm using chaotic particle swarm optimal (CPSO) compressed sensing based on GPR data according to the sparsity of root space. Radar data are decomposed, observed, measured and represented in sparse manner, so roots image can be reconstructed with limited data. Firstly, radar signal measurement and sparse representation are implemented, and the solution space is established by wavelet basis and Gauss random matrix; secondly, the matching function is considered as the fitness function, and the best fitness value is found by a PSO algorithm; then, a chaotic search was used to obtain the global optimal operator; finally, the root image is reconstructed by the optimal operators. A-scan data, B-scan data, and complex data from American GSSI GPR is used, respectively, in the experimental test. For B-scan data, the computation time was reduced 60 % and PSNR was improved 5.539 dB; for actual root data imaging, the reconstruction PSNR was 26.300 dB, and total computation time was only 67.210 s. The CPSO-OMP algorithm overcomes the problem of local optimum trapping and comprehensively enhances the precision during reconstruction. 展开更多
关键词 Chaotic particle swarm Compression sensing Ground penetrating radar orthogonal matching pursuit (OMP) Root imaging
在线阅读 下载PDF
A Novel Training Sequence Applied to DCS-Based Channel Estimation 被引量:2
3
作者 Weizhang Xu Xinle Yu +2 位作者 Yanfei Li Lu Si Zhanxin Yang 《China Communications》 SCIE CSCD 2018年第11期70-78,共9页
Studies have indicated that the distributed compressed sensing based(DCSbased) channel estimation can decrease the length of the reference signals effectively. In block transmission, a unique word(UW) can be used as a... Studies have indicated that the distributed compressed sensing based(DCSbased) channel estimation can decrease the length of the reference signals effectively. In block transmission, a unique word(UW) can be used as a cyclic prefix and reference signal. However, the DCS-based channel estimation requires diversity sequences instead of UW. In this paper, we proposed a novel method that employs a training sequence(TS) whose duration time is slightly longer than the maximum delay spread time. Based on proposed TS, the DCS approach perform perfectly in multipath channel estimation. Meanwhile, a cyclic prefix construct could be formed, which reduces the complexity of the frequency domain equalization(FDE) directly. Simulation results demonstrate that, by using the method of simultaneous orthogonal matching pursuit(SOMP), the required channel overhead has been reduced thanks to the proposed TS. 展开更多
关键词 jointly sparse channel estimation distributed compressed sensing (DCS) simul-taneous orthogonal matching pursuit (SOMP) training sequence (TS) unique word (UW) frequency domain equalization (FDE)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部