This article proposes a new transceiver design for Single carrier frequency division multiple access(SCFDMA)system based on discrete wavelet transform(DWT). SCFDMA offers almost same structure as Orthogonal frequency ...This article proposes a new transceiver design for Single carrier frequency division multiple access(SCFDMA)system based on discrete wavelet transform(DWT). SCFDMA offers almost same structure as Orthogonal frequency division multiple access(OFDMA)with extra advantage of low Peak to Average Power Ratio(PAPR). Moreover,this article also suggests the application of Walsh Hadamard transform(WHT)for linear precoding(LP)to improve the PAPR performance of the system. Supremacy of the proposed transceiver over conventional Fast Fourier transform(FFT)based SCFDMA is shown through simulated results in terms of PAPR,spectral efficiency(SE)and bit error rate(BER).展开更多
A resource allocation problem considering both efficiency and fairness in orthogonal frequency division multiple access (OFDMA) systems is studied. According to the optimality conditions, a downlink resource allocat...A resource allocation problem considering both efficiency and fairness in orthogonal frequency division multiple access (OFDMA) systems is studied. According to the optimality conditions, a downlink resource allocation algorithm consisting of subcarrier assignment and power alloca- tion is proposed. By adjusting the tradeoff coefficient, the proposed algorithm can achieve different levels of compromise between efficiency and fairness. The well-known classic resource allocation policies such as sum-rate maximization algorithm, proportional fairness algorithm and max-rain algorithm are all special cases of the proposed algorithm. Simulation results show that the compromise between efficiency and fairness can be continuously adjusted according to system requirements.展开更多
The problem of the simultaneous multi-user resource allocation algorithm in orthogonal frequency division multiple access(OFDMA)based systems has recently attracted significant interest.However,most studies focus on m...The problem of the simultaneous multi-user resource allocation algorithm in orthogonal frequency division multiple access(OFDMA)based systems has recently attracted significant interest.However,most studies focus on maximizing the system throughput and spectral efficiency.As the green radio is essential in 5G and future networks,the energy efficiency becomes the major concern.In this paper,we develop four resource allocation schemes in the downlink OFDMA network and the main focus is on analyzing the energy efficiency of these schemes.Specifically,we employ the advanced multi-antenna technology in a multiple input-multiple output(MIMO)system.The first scheme is based on transmit spatial diversity(TSD),in which the vector channel with the highest gain between the base station(BTS)and specific antenna at the remote terminal(RT)is chosen for transmission.The second scheme further employs spatial multiplexing on the MIMO system to enhance the throughput.The space-division multiple-access(SDMA)scheme assigns single subcarrier simultaneously to RTs with pairwise“nearly orthogonal”spatial signatures.In the fourth scheme,we propose to design the transmit beamformers based on the zero-forcing(ZF)criterion such that the multi-user interference(MUI)is completely removed.We analyze the tradeoff between the throughput and power consumption and compare the performance of these schemes in terms of the energy efficiency.展开更多
In this paper, we propose optimum and sub-optimum resource allocation and opportunistic scheduling solutions for orthogonal frequency division multiple access (OFDMA)-based multicellular systems. The applicability, ...In this paper, we propose optimum and sub-optimum resource allocation and opportunistic scheduling solutions for orthogonal frequency division multiple access (OFDMA)-based multicellular systems. The applicability, complexity, and performance of the proposed algorithms are analyzed and numerically evaluated. In the initial setup, the fractional frequency reuse (FFR) technique for inter-cell interference cancellation is applied to classify the users into two groups, namely interior and exterior users. Adaptive modulation is then employed according to the channel state information (CSI) of each user to meet the symbol error rate (SER) requirement. There then, we develop subcarrier-and-bit allocation method, which maximizes the total system throughput subject to the constraints that each user has a minimum data rate requirement. The algorithm to achieve the optimum solution requires high computational complexity which hinders it from practicability. Toward this suboptimum method with the reduced to the order of O(NIO, the total number of subcarriers end, we complexity propose a extensively where N and K denote and users, respectively. Numerical results show that the proposed algorithm approaches the optimum solution, yet it enjoys the features of simplicity, dynamic cell configuration, adaptive subearrier-and-bit allocation, and spectral efficiency.展开更多
文摘This article proposes a new transceiver design for Single carrier frequency division multiple access(SCFDMA)system based on discrete wavelet transform(DWT). SCFDMA offers almost same structure as Orthogonal frequency division multiple access(OFDMA)with extra advantage of low Peak to Average Power Ratio(PAPR). Moreover,this article also suggests the application of Walsh Hadamard transform(WHT)for linear precoding(LP)to improve the PAPR performance of the system. Supremacy of the proposed transceiver over conventional Fast Fourier transform(FFT)based SCFDMA is shown through simulated results in terms of PAPR,spectral efficiency(SE)and bit error rate(BER).
文摘A resource allocation problem considering both efficiency and fairness in orthogonal frequency division multiple access (OFDMA) systems is studied. According to the optimality conditions, a downlink resource allocation algorithm consisting of subcarrier assignment and power alloca- tion is proposed. By adjusting the tradeoff coefficient, the proposed algorithm can achieve different levels of compromise between efficiency and fairness. The well-known classic resource allocation policies such as sum-rate maximization algorithm, proportional fairness algorithm and max-rain algorithm are all special cases of the proposed algorithm. Simulation results show that the compromise between efficiency and fairness can be continuously adjusted according to system requirements.
文摘The problem of the simultaneous multi-user resource allocation algorithm in orthogonal frequency division multiple access(OFDMA)based systems has recently attracted significant interest.However,most studies focus on maximizing the system throughput and spectral efficiency.As the green radio is essential in 5G and future networks,the energy efficiency becomes the major concern.In this paper,we develop four resource allocation schemes in the downlink OFDMA network and the main focus is on analyzing the energy efficiency of these schemes.Specifically,we employ the advanced multi-antenna technology in a multiple input-multiple output(MIMO)system.The first scheme is based on transmit spatial diversity(TSD),in which the vector channel with the highest gain between the base station(BTS)and specific antenna at the remote terminal(RT)is chosen for transmission.The second scheme further employs spatial multiplexing on the MIMO system to enhance the throughput.The space-division multiple-access(SDMA)scheme assigns single subcarrier simultaneously to RTs with pairwise“nearly orthogonal”spatial signatures.In the fourth scheme,we propose to design the transmit beamformers based on the zero-forcing(ZF)criterion such that the multi-user interference(MUI)is completely removed.We analyze the tradeoff between the throughput and power consumption and compare the performance of these schemes in terms of the energy efficiency.
文摘In this paper, we propose optimum and sub-optimum resource allocation and opportunistic scheduling solutions for orthogonal frequency division multiple access (OFDMA)-based multicellular systems. The applicability, complexity, and performance of the proposed algorithms are analyzed and numerically evaluated. In the initial setup, the fractional frequency reuse (FFR) technique for inter-cell interference cancellation is applied to classify the users into two groups, namely interior and exterior users. Adaptive modulation is then employed according to the channel state information (CSI) of each user to meet the symbol error rate (SER) requirement. There then, we develop subcarrier-and-bit allocation method, which maximizes the total system throughput subject to the constraints that each user has a minimum data rate requirement. The algorithm to achieve the optimum solution requires high computational complexity which hinders it from practicability. Toward this suboptimum method with the reduced to the order of O(NIO, the total number of subcarriers end, we complexity propose a extensively where N and K denote and users, respectively. Numerical results show that the proposed algorithm approaches the optimum solution, yet it enjoys the features of simplicity, dynamic cell configuration, adaptive subearrier-and-bit allocation, and spectral efficiency.