期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Improved Semipolar(11(2|-)2) GaN Quality Grown on m-Plane Sapphire Substrates by Metal Organic Chemical Vapor Deposition Using Self-Organized SiN_x Interlayer
1
作者 许晟瑞 赵颖 +3 位作者 姜腾 张进成 李培咸 郝跃 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第6期150-152,共3页
The effect of a self-organized SiNs interlayer on the defect density of (1122) semipolar GaN grown on 7n-plane sapphire is studied by transmission electron microscopy, atomic force microscopy and high resolution x-r... The effect of a self-organized SiNs interlayer on the defect density of (1122) semipolar GaN grown on 7n-plane sapphire is studied by transmission electron microscopy, atomic force microscopy and high resolution x-ray diffrac- tion. The SiNx interlayer reduces the c-type dislocation density from 2.5 ×10^10 cm^-2 to 5 ×10^8 cm 2. The SiNx interlayer produces regions that are free from basal plane stacking faults (BSFs) and dislocations. The overall BSF density is reduced from 2.1×10^5 cm-1 to 1.3×10^4 cm^-1. The large dislocations and BSF reduction in semipolar (1122) GaN with the SiNx, interlayer result from two primary mechanisms. The first mechanism is the direct dislocation blocking by the SiNx interlayer, and the second mechanism is associated with the unique structure character of (1122) semipolar GaN. 展开更多
关键词 GaN Quality Grown on m-Plane Sapphire Substrates by Metal Organic Chemical Vapor Deposition Using Self-organized SiN_x Interlaye in of is by Improved Semipolar on
在线阅读 下载PDF
Strongly enhanced flux pinning in the YBa_2Cu_3O_(7-X) films with the co-doping of Ba TiO_3 nanorod and Y_2O_3 nanoparticles at 65 K 被引量:1
2
作者 王洪艳 丁发柱 +1 位作者 古宏伟 张腾 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期497-501,共5页
YBa2Cu3O7-x(YBCO) films with co-doping BaTiO3(BTO) and Y2O3 nanostructures were prepared by metal organic deposition using trifluoroacetates(TFA-MOD). The properties of the BTO/Y2O3co-doped YBCO films with diffe... YBa2Cu3O7-x(YBCO) films with co-doping BaTiO3(BTO) and Y2O3 nanostructures were prepared by metal organic deposition using trifluoroacetates(TFA-MOD). The properties of the BTO/Y2O3co-doped YBCO films with different excess yttrium have been systematically studied by x-ray diffraction(XRD), Raman spectra, and scanning electron microscope(SEM). The optimized content of yttrium excess in the BTO/Y2O3co-doped YBCO films is 10 mol.%, and the critical current density is as high as - 17 mA/cm^2(self-field, 65 K) by the magnetic signal. In addition, the Y2Cu2O5 was formed when the content of yttrium excess increases to 24 mol.%, which may result in the deterioration of the superconducting properties and the microstructure. The unique combination of the different types of nanostructures of BTO and Y2O3 in the doped YBCO films, compared with the pure YBCO films and BTO doped YBCO films, enhances the critical current density(JC) not only at the self-magnetic field, but also in the applied magnetic field. 展开更多
关键词 YBa2Cu3O7-x(YBCO) film flux pinning BaTiO3(BTO) and Y2O3 nanostructures metal organic deposition using trifluoroacetates(TFA-MOD
在线阅读 下载PDF
In-situ wafer bowing measurements of GaN grown on Si(111) substrate by reflectivity mapping in metal organic chemical vapor deposition system 被引量:1
3
作者 杨亿斌 柳铭岗 +12 位作者 陈伟杰 韩小标 陈杰 林秀其 林佳利 罗慧 廖强 臧文杰 陈崟松 邱运灵 吴志盛 刘扬 张佰君 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期362-366,共5页
In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2 Thomas Swan close coupled showerhead metal organic chemical vapor deposition(MOCVD) system. The r... In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2 Thomas Swan close coupled showerhead metal organic chemical vapor deposition(MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses(tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, Ga N grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded Al Ga N buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method. 展开更多
关键词 stresses metal organic chemical vapor deposition wafer bowing in-situ reflectivity mapping
在线阅读 下载PDF
Low-leakage-current AlGaN/GaN HEMTs on Si substrates with partially Mg-doped GaN buffer layer by metal organic chemical vapor deposition 被引量:1
4
作者 黎明 王勇 +1 位作者 王凯明 刘纪美 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期597-601,共5页
High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium ... High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium (Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally onμe. A 1μ m gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10-8 A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown A1GaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μ m gate length T-shaped gate HEMTs were also investigated. 展开更多
关键词 AlGaN/GaN HEMTs low-leakage current metal organic chemical vapor deposition Mg-dopedbuffer layer
在线阅读 下载PDF
Quasi-homoepitaxial GaN-based blue light emitting diode on thick GaN template 被引量:1
5
作者 李俊泽 陶岳彬 +6 位作者 陈志忠 姜显哲 付星星 姜爽 焦倩倩 于彤军 张国义 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第1期301-306,共6页
The high power GaN-based blue light emitting diode(LED) on an 80-μm-thick GaN template is proposed and even realized by several technical methods like metal organic chemical vapor deposition(MOCVD), hydride vapor-pha... The high power GaN-based blue light emitting diode(LED) on an 80-μm-thick GaN template is proposed and even realized by several technical methods like metal organic chemical vapor deposition(MOCVD), hydride vapor-phase epitaxial(HVPE), and laser lift-off(LLO). Its advantages are demonstrated from material quality and chip processing. It is investigated by high resolution X-ray diffraction(XRD), high resolution transmission electron microscope(HRTEM), Rutherford back-scattering(RBS), photoluminescence, current-voltage and light output-current measurements. The width of(0002) reflection in XRD rocking curve, which reaches 173 for the thick GaN template LED, is less than that for the conventional one, which reaches 258. The HRTEM images show that the multiple quantum wells(MQWs) in 80-μmthick GaN template LED have a generally higher crystal quality. The light output at 350 mA from the thick GaN template LED is doubled compared to traditional LEDs and the forward bias is also substantially reduced. The high performance of 80-μm-thick GaN template LED depends on the high crystal quality. However, although the intensity of MQWs emission in PL spectra is doubled, both the wavelength and the width of the emission from thick GaN template LED are increased. This is due to the strain relaxation on the surface of 80-μm-thick GaN template, which changes the strain in InGaN QWs and leads to InGaN phase separation. 展开更多
关键词 HOMOEPITAXY strain relaxation metal organic chemical vapor deposition(MOCVD) hydride vapor-phase epitaxy(HVPE)
在线阅读 下载PDF
Selective Area Growth and Characterization of GaN Nanorods Fabricated by Adjusting the Hydrogen Flow Rate and Growth Temperature with Metal Organic Chemical Vapor Deposition 被引量:1
6
作者 任鹏 韩刚 +6 位作者 付丙磊 薛斌 张宁 刘喆 赵丽霞 王军喜 李晋闽 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第6期145-149,共5页
CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposit... CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). The SAG template is obtained by nanospherical-lens photolithography. It is found that increasing the flow rate of 1-12 will change the CaN crystal shape from pyramid to vertical rod, while increasing the growth temperature will reduce the diameters of GaN rods to nanometer scale. Finally the CaN nanorods with smooth lateral surface and relatively good quality are obtained under the condition that the H2:N2 ratio is 1:1 and the growth temperature is 1030℃. The good crystal quality and orientation of GaN nanorods are confirmed by high resolution transmission electron microscopy. The cathodoluminescence spectrum suggests that the crystal and optical quality is also improved with increasing the temperature. 展开更多
关键词 of or IS as RATE GAN Selective Area Growth and Characterization of GaN Nanorods Fabricated by Adjusting the Hydrogen Flow Rate and Growth Temperature with Metal Organic Chemical Vapor Deposition by with
在线阅读 下载PDF
Atomic force microscopy investigation of growth process of organic TCNQ aggregates on SiO_2 and mica substrates
7
作者 郇庆 胡昊 +3 位作者 潘理达 肖江 杜世萱 高鸿钧 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期270-275,共6页
Deposition patterns of tetracyanoquinodimethane (TCNQ) molecules on different surfaces are investigated by atomic force microscopy. A homemade physical vapour deposition system allows the better control of molecule ... Deposition patterns of tetracyanoquinodimethane (TCNQ) molecules on different surfaces are investigated by atomic force microscopy. A homemade physical vapour deposition system allows the better control of molecule deposition. Taking advantage of this system, we investigate TCNQ thin film growth on both SiO2 and mica surfaces. It is found that dense island patterns form at a high deposition rate, and a unique seahorse-like pattern forms at a low deposition rate. Growth patterns on different substrates suggest that the fractal pattern formation is dominated by molecule-molecule interaction. Finally, a phenomenal "two-branch" model is proposed to simulate the growth process of the seahorse pattern. 展开更多
关键词 TETRACYANOQUINODIMETHANE organic molecule deposition seahorse-like patterns
在线阅读 下载PDF
Growth and characterization of AlN epilayers using pulsed metal organic chemical vapor deposition
8
作者 吉泽生 汪连山 +5 位作者 赵桂娟 孟钰淋 李方政 李辉杰 杨少延 王占国 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第7期420-425,共6页
We report the growth of Al N epilayers on c-plane sapphire substrates by pulsed metal organic chemical vapor deposition(MOCVD). The sources of trimethylaluminium(TMAl) and ammonia were pulse introduced into the re... We report the growth of Al N epilayers on c-plane sapphire substrates by pulsed metal organic chemical vapor deposition(MOCVD). The sources of trimethylaluminium(TMAl) and ammonia were pulse introduced into the reactor to avoid the occurrence of the parasitic reaction. Through adjusting the duty cycle ratio of TMAl to ammonia from 0.8 to 3.0, the growth rate of Al N epilayers could be controlled in the range of 0.24 m/h to 0.93 m/h. The high-resolution x-ray diffraction(HRXRD) measurement showed that the full width at half maximum(FWHM) of the(0002) and(10-12) reflections for a sample would be 194 arcsec and 421 arcsec, respectively. The step-flow growth mode was observed in the sample with the atomic level flat surface steps, in which a root-mean-square(RMS) roughness was lower to 0.2 nm as tested by atomic force microscope(AFM). The growth process of Al N epilayers was discussed in terms of crystalline quality, surface morphology,and residual stress. 展开更多
关键词 pulsed metal organic chemical vapor deposition growth mode MORPHOLOGY crystalline quality
在线阅读 下载PDF
GaInP/GaInAs/GaInNAs/Ge Four-Junction Solar Cell Grown by Metal Organic Chemical Vapor Deposition with High Efficiency
9
作者 张杨 王青 +5 位作者 张小宾 刘振奇 陈丙振 黄珊珊 彭娜 王智勇 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期167-171,共5页
We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the... We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the current limit of the GalnNAs sub cell, we design three kinds of anti-reflection coatings and adjust the base region thickness of the GalnNAs sub cell. Developed by a series of experiments, the external quantum efficiency of the GalnNAs sub cell exceeds 80%, and its current density reaches 11.24 mA/cm2. Therefore the current limit of the 4J solar cell is significantly improved. Moreover, we discuss the difference of test results between 4J and GalnP/GalnAs/Ge solar cells under the 1 sun AMO spectrum. 展开更多
关键词 by on it of GaInP/GaInAs/GaInNAs/Ge Four-Junction Solar Cell Grown by Metal Organic Chemical Vapor Deposition with High Efficiency is THAN Ge GaAs with cell that
在线阅读 下载PDF
Fabrication of InAlGaN/GaN High Electron Mobility Transistors on Sapphire Substrates by Pulsed Metal Organic Chemical Vapor Deposition
10
作者 全汝岱 张进成 +3 位作者 张雅超 张苇航 任泽阳 郝跃 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期145-148,共4页
Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostruct... Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostructure. The electron mobility is 1668.08cm2/V.s together with a high two-dimensional-electron-gas density of 1.43 × 10^13 cm-2 for the InAlCaN/CaN heterostructure of 2Onto InAlCaN quaternary barrier. High electron mobility transistors with gate dimensions of 1 × 50 μm2 and 4μm source-drain distance exhibit the maximum drain current of 763.91 mA/mm, the maximum extrinsic transconductance of 163.13 mS/mm, and current gain and maximum oscillation cutoff frequencies of 11 GHz and 21 GHz, respectively. 展开更多
关键词 GAN IS in of Fabrication of InAlGaN/GaN High Electron Mobility Transistors on Sapphire Substrates by Pulsed Metal Organic Chemical Vapor Deposition by on
在线阅读 下载PDF
Superior material qualities and transport properties of InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition
11
作者 张雅超 周小伟 +6 位作者 许晟瑞 陈大正 王之哲 汪星 张金风 张进成 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期796-801,共6页
Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy... Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy imaging shows the phase separation free InGaN channel with smooth and abrupt interface. A very high two-dimensional electron gas density of approximately 1.85 x 10^13 cm-2 is obtained due to the superior carrier confinement. In addition, the Hall mobility reaches 967 cruZ/V-s, owing to the suppression of interface roughness scattering. Furthermore, temperature-dependent Hall measurement results show that InGaN channel heterostructure possesses a steady two-dimensional electron gas density over the tested temperature range, and has superior transport properties at elevated temperatures compared with the traditional GaN channel heterostructure. The gratifying results imply that InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition is a promising candidate for microwave power devices. 展开更多
关键词 HETEROSTRUCTURE InGaN channel pulsed metal organic chemical vapor deposition
在线阅读 下载PDF
High-crystalline GaSb epitaxial films grown on GaAs(001) substrates by low-pressure metal–organic chemical vapor deposition
12
作者 王连锴 刘仁俊 +4 位作者 吕游 杨皓宇 李国兴 张源涛 张宝林 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期114-118,共5页
Orthogonal experiments of Ga Sb films growth on Ga As(001) substrates have been designed and performed by using a low-pressure metal–organic chemical vapor deposition(LP-MOCVD) system. The crystallinities and mic... Orthogonal experiments of Ga Sb films growth on Ga As(001) substrates have been designed and performed by using a low-pressure metal–organic chemical vapor deposition(LP-MOCVD) system. The crystallinities and microstructures of the produced films were comparatively analyzed to achieve the optimum growth parameters. It was demonstrated that the optimized Ga Sb thin film has a narrow full width at half maximum(358 arc sec) of the(004) ω-rocking curve, and a smooth surface with a low root-mean-square roughness of about 6 nm, which is typical in the case of the heteroepitaxial single-crystal films. In addition, we studied the effects of layer thickness of Ga Sb thin film on the density of dislocations by Raman spectra. It is believed that our research can provide valuable information for the fabrication of high-crystalline Ga Sb films and can promote the integration probability of mid-infrared devices fabricated on mainstream performance electronic devices. 展开更多
关键词 crystal growth metal–organic chemical vapor deposition thin films
在线阅读 下载PDF
Optical and structural investigation of a-plane GaN layers on r-plane sapphire with nucleation layer optimization
13
作者 张金风 许晟瑞 +1 位作者 张进成 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第5期409-412,共4页
Nonpolar a-plane GaN epilayers are grown on several r-plane sapphire substrates by metal organic chemical vapour deposition using different nucleation layers: (A) a CaN nucleation layer deposited at low temperature... Nonpolar a-plane GaN epilayers are grown on several r-plane sapphire substrates by metal organic chemical vapour deposition using different nucleation layers: (A) a CaN nucleation layer deposited at low temperature (LT); (B) an A1N nucleation layer deposited at high temperature; or (C) an LT thin AIN nucleation layer with an AIN layer and an A1N/A1CaN superlattice both subsequently deposited at high temperature. The samples have been characterized by Xray diffraction (XRD), atomic force microscopy and photoluminescence. The GaN layers grown using nucleation layers B and C show narrower XRD rocking curves than that using nucleation layer A, indicating a reduction in crystal defect density. Furthermore, the GaN layer grown using nucleation layer C exhibits a surface morphology with triangular defect pits eliminated completely. The improved optical property, corresponding to the enhanced crystal quality, is also confirmed by temperature-dependent and excitation power-dependent photoluminescence measurements. 展开更多
关键词 a-plane GaN metal organic chemical vapour deposition A1N/A1GaN superlattice PHOTOLUMINESCENCE
在线阅读 下载PDF
Advantages of InGaN/GaN multiple quantum well solar cells with stepped-thickness quantum wells
14
作者 陈鑫 赵璧君 +7 位作者 任志伟 童金辉 王幸福 卓祥景 章俊 李丹伟 易翰翔 李述体 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期574-577,共4页
InGaN/GaN multiple quantum well (MQW) solar cells with stepped-thickness quantum wells (SQW) are designed and grown by metal-organic chemical vapor deposition. The stepped-thickness quantum wells structure, in whi... InGaN/GaN multiple quantum well (MQW) solar cells with stepped-thickness quantum wells (SQW) are designed and grown by metal-organic chemical vapor deposition. The stepped-thickness quantum wells structure, in which the well thickness becomes smaller and smaller along the growth direction, reveals better crystalline quality and better spectral overlap with the solar spectrum. Consequently, the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 27.12% and 56.41% compared with the conventional structure under illumination of AM1.5G (100 mW/cm2). In addition, approaches to further promote the performance of InGaN/GaN multiple quantum well solar cells are discussed and presented. 展开更多
关键词 metal organic chemical vapor deposition (MOCVD) GaN based solar cells stepped-thickness quantum wells
在线阅读 下载PDF
Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
15
作者 郭静姝 祝杰杰 +9 位作者 刘思雨 刘捷龙 徐佳豪 陈伟伟 周雨威 赵旭 宓珉瀚 杨眉 马晓华 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期467-471,共5页
This paper studied the low-resistance ohmic contacts on InAlN/GaN with metal–organic chemical vapor deposition(MOCVD)regrowth technique.The 150-nm regrown n-InGaN exhibits a low sheet resistance of 31Ω/□,resulting ... This paper studied the low-resistance ohmic contacts on InAlN/GaN with metal–organic chemical vapor deposition(MOCVD)regrowth technique.The 150-nm regrown n-InGaN exhibits a low sheet resistance of 31Ω/□,resulting in an extremely low contact resistance of 0.102Ω·mm between n^(+)-InGaN and InAlN/GaN channels.Mask-free regrowth process was also used to significantly improve the sheet resistance of InAlN/GaN with MOCVD regrown ohmic contacts.Then,the diffusion mechanism between n^(+)-InGaN and InAlN during regrowth process was investigated with electrical and structural characterizations,which could benefit the further process optimization. 展开更多
关键词 InAlN/GaN low-resistance ohmic contacts metal–organic chemical vapor deposition(MOCVD) n^(+)-InGaN time of flight secondary ion mass spectrometry(TOF-SIMS)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部