Organic semiconductor materials have shown unique advantages in the development of optoelectronic devices due to their ease of preparation,low cost,lightweight,and flexibility.In this work,we explored the application ...Organic semiconductor materials have shown unique advantages in the development of optoelectronic devices due to their ease of preparation,low cost,lightweight,and flexibility.In this work,we explored the application of the organic semiconductor Y6-1O single crystal in photodetection devices.Firstly,Y6-1O single crystal material was prepared on a silicon substrate using solution droplet casting method.The optical properties of Y6-1O material were characterized by polarized optical microscopy,fluorescence spectroscopy,etc.,confirming its highly single crystalline performance and emission properties in the near-infrared region.Phototransistors based on Y6-1O materials with different thicknesses were then fabricated and tested.It was found that the devices exhibited good visible to near-infrared photoresponse,with the maximum photoresponse in the near-infrared region at 785 nm.The photocurrent on/off ratio reaches 10^(2),and photoresponsivity reaches 16 mA/W.It was also found that the spectral response of the device could be regulated by gate voltage as well as the material thickness,providing important conditions for optimizing the performance of near-infrared photodetectors.This study not only demonstrates the excellent performance of organic phototransistors based on Y6-1O single crystal material in near-infrared detection but also provides new ideas and directions for the future development of infrared detectors.展开更多
Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous s...Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous solutions,resulting in significant optical losses and exciton recombination.In this study,two series of six novel polymer photocatalysts(FLUSO,FLUSO-PEG10,FLUSO-PEG30;CPDTSO,CPDTSO-PEG10,CPDTSO-PEG30)are designed and synthesized by incorporating the hydrophilic,non-conjugated polyethylene glycol(PEG)chain,into both the main and side chains of polymers.By precisely optimizing the ratio of hydrophilic PEG segments,the water dispersibility is significantly improved while the light absorption capability of the polymer photocatalysts is well maintained.The experimental results confirm that the optimized FLUSO-PEG10 exhibits excellent photocatalytic hydrogen evolution rate,reaching up to 33.9 mmol/(g·h),which is nearly three times higher than that of fullyπ-conjugated counterparts.Water contact angles and particle size analyses reveal that incorporating non-conjugated segments into the main chains enhances the capacitance of the polymer/water interface and reduces particle aggregation,leading to improved photocatalyst dispersion and enhanced charge generation.展开更多
Ferrocene-based porous organic polymer(FcPOP) was constructed with ferrocene and porphyrin derivatives as building blocks via Schiff-base coupling. FcPOP was well characterized, and exhibited good thermal stability, h...Ferrocene-based porous organic polymer(FcPOP) was constructed with ferrocene and porphyrin derivatives as building blocks via Schiff-base coupling. FcPOP was well characterized, and exhibited good thermal stability, high porosity, microporous structure, and homogeneous pore size distribution. Ferrocene blocks with highly electron-rich characteristics endowed Fc POP with excellent adsorption capacity of CO2 and methyl violet. The kinetic study indicated adsorption of methyl violet onto FcPOP mainly complied with pesudo-second order model. The maximum adsorption capacity of FcPOP derived from Langmuir isotherm model reached up to 516 mg/g. More importantly, FcPOP could be easily regenerated and repeatedly employed for removal of methyl violet with high efficiency. Overall, FcPOP in the present study highlighted prospective applications in the field of gas capture and dyeing wastewater treatment.展开更多
Traditional soil additives like Portland cement and lime are prone to cause the brittle fracture behavior of soil,and possibly,environmental impacts.This study explores the potential use of polyurethane organic polyme...Traditional soil additives like Portland cement and lime are prone to cause the brittle fracture behavior of soil,and possibly,environmental impacts.This study explores the potential use of polyurethane organic polymer and sisal fiber in improving the mechanical performance of sand.The effects of polymer content,fiber content,and dry density on the unconfined compressive strength(UCS)and direct tensile strength(DTS)of the polymer-fiber-sand composite were evaluated.The results showed significant increase in UCS and DTS of the reinforced sand with the increase of polymer content,fiber content,and dry density.At high dry density condition,a single peaked stress−strain curve is often observed.Higher polymer content is beneficial to increasing the peak stress,while higher fiber content contributes more to the post-peak stress.The combined use of polymers and fibers in soil reinforcement effectively prevents the propagation and development of cracks under the stress.Scanning electron microscopy(SEM)test was also performed to investigate the micro-structural changes and inter-particle relations.It was found through SEM images that the surface coating,bonding,and filling effects conferred by polymer matrix greatly enhance the interfacial interactions,and hence provide a cohesive environment where the strength of fibers could be readily mobilized.展开更多
The capability of hydrophobic association polymer(HAPAM) to displace oil is different from that of hydrolyzed polyacrylamide(HPAM) because they have different rheological properties.The viscoelasticity of five polymer...The capability of hydrophobic association polymer(HAPAM) to displace oil is different from that of hydrolyzed polyacrylamide(HPAM) because they have different rheological properties.The viscoelasticity of five polymers was measured using Physica MCR301 rheometer and was compared.The five polymers include three HAPAMs with relative molecular mass of 1 248×104(TypeⅠ),750×104(TypeⅡ),and 571×104(Type Ⅲ) separately and two HPAMs with relative molecular mass of 1 200×104 and 3 800×104 respectively.The experiment results indicate that the viscoelasticity of HAPAM is better than that of HPAM.The storage modulus G' and the loss modulus G″ for HAPAM solutions are also larger than those for HPAM.Comparing the rheological curves of different HAPAM types,it is found that the viscosity of typeⅡ and type Ⅲ is almost same at different shear rates while the viscosity of type I is the lower than that of Types Ⅱ and Ⅲ.The storage modulus G' and the loss modulus G″ for three types of HAPAM were measured in low oscillation frequency range,and the results show that G' is greater than G″ for all three different types of HAPAM,but their loss modulus is almost same,and the G' is in the order of type Ⅱ>type Ⅲ>type I.In addition,the G' and G″ increase with aging time for all three HAPAM solutions were stayed at different days.The viscoelasticity of type Ⅰ reaches the highest value when aging time is 9 d at 45 ℃,but it is 7 d for type Ⅱ and type Ⅲ.The different viscoelasticity properties can be attributed to self-organization supermolecule networks which is formed by hydrophobic association of HAPAM molecular and molecular chain entanglement.展开更多
基金Supported by the National Key Research and Development Program of China(2021YFB2012601)National Natural Science Foundation of China(12204109)+1 种基金Science and Technology Innovation Plan of Shanghai Science and Technology Commission(21JC1400200)Higher Education Indus⁃try Support Program of Gansu Province(2022CYZC-06)。
文摘Organic semiconductor materials have shown unique advantages in the development of optoelectronic devices due to their ease of preparation,low cost,lightweight,and flexibility.In this work,we explored the application of the organic semiconductor Y6-1O single crystal in photodetection devices.Firstly,Y6-1O single crystal material was prepared on a silicon substrate using solution droplet casting method.The optical properties of Y6-1O material were characterized by polarized optical microscopy,fluorescence spectroscopy,etc.,confirming its highly single crystalline performance and emission properties in the near-infrared region.Phototransistors based on Y6-1O materials with different thicknesses were then fabricated and tested.It was found that the devices exhibited good visible to near-infrared photoresponse,with the maximum photoresponse in the near-infrared region at 785 nm.The photocurrent on/off ratio reaches 10^(2),and photoresponsivity reaches 16 mA/W.It was also found that the spectral response of the device could be regulated by gate voltage as well as the material thickness,providing important conditions for optimizing the performance of near-infrared photodetectors.This study not only demonstrates the excellent performance of organic phototransistors based on Y6-1O single crystal material in near-infrared detection but also provides new ideas and directions for the future development of infrared detectors.
文摘Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous solutions,resulting in significant optical losses and exciton recombination.In this study,two series of six novel polymer photocatalysts(FLUSO,FLUSO-PEG10,FLUSO-PEG30;CPDTSO,CPDTSO-PEG10,CPDTSO-PEG30)are designed and synthesized by incorporating the hydrophilic,non-conjugated polyethylene glycol(PEG)chain,into both the main and side chains of polymers.By precisely optimizing the ratio of hydrophilic PEG segments,the water dispersibility is significantly improved while the light absorption capability of the polymer photocatalysts is well maintained.The experimental results confirm that the optimized FLUSO-PEG10 exhibits excellent photocatalytic hydrogen evolution rate,reaching up to 33.9 mmol/(g·h),which is nearly three times higher than that of fullyπ-conjugated counterparts.Water contact angles and particle size analyses reveal that incorporating non-conjugated segments into the main chains enhances the capacitance of the polymer/water interface and reduces particle aggregation,leading to improved photocatalyst dispersion and enhanced charge generation.
基金Project(51778226)supported by the National Natural Science Foundation of ChinaProject(2018JJ3159)supported by the Hunan Provincial Natural Science Foundation for Youths,China。
文摘Ferrocene-based porous organic polymer(FcPOP) was constructed with ferrocene and porphyrin derivatives as building blocks via Schiff-base coupling. FcPOP was well characterized, and exhibited good thermal stability, high porosity, microporous structure, and homogeneous pore size distribution. Ferrocene blocks with highly electron-rich characteristics endowed Fc POP with excellent adsorption capacity of CO2 and methyl violet. The kinetic study indicated adsorption of methyl violet onto FcPOP mainly complied with pesudo-second order model. The maximum adsorption capacity of FcPOP derived from Langmuir isotherm model reached up to 516 mg/g. More importantly, FcPOP could be easily regenerated and repeatedly employed for removal of methyl violet with high efficiency. Overall, FcPOP in the present study highlighted prospective applications in the field of gas capture and dyeing wastewater treatment.
基金Project(41877212)supported by the National Natural Science Foundation of ChinaProject(2017010)supported by the Water Conservancy Science and Technology Project of Jiangsu Province,ChinaProject(B200202013)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Traditional soil additives like Portland cement and lime are prone to cause the brittle fracture behavior of soil,and possibly,environmental impacts.This study explores the potential use of polyurethane organic polymer and sisal fiber in improving the mechanical performance of sand.The effects of polymer content,fiber content,and dry density on the unconfined compressive strength(UCS)and direct tensile strength(DTS)of the polymer-fiber-sand composite were evaluated.The results showed significant increase in UCS and DTS of the reinforced sand with the increase of polymer content,fiber content,and dry density.At high dry density condition,a single peaked stress−strain curve is often observed.Higher polymer content is beneficial to increasing the peak stress,while higher fiber content contributes more to the post-peak stress.The combined use of polymers and fibers in soil reinforcement effectively prevents the propagation and development of cracks under the stress.Scanning electron microscopy(SEM)test was also performed to investigate the micro-structural changes and inter-particle relations.It was found through SEM images that the surface coating,bonding,and filling effects conferred by polymer matrix greatly enhance the interfacial interactions,and hence provide a cohesive environment where the strength of fibers could be readily mobilized.
基金Project(20873181) supported by the National Natural Science Foundation of ChinaProject(2007AA06Z214) supported by the High-tech Research and Development Program of ChinaProject(ts20070704) supported by Taishan Scholars Construction Engineering
文摘The capability of hydrophobic association polymer(HAPAM) to displace oil is different from that of hydrolyzed polyacrylamide(HPAM) because they have different rheological properties.The viscoelasticity of five polymers was measured using Physica MCR301 rheometer and was compared.The five polymers include three HAPAMs with relative molecular mass of 1 248×104(TypeⅠ),750×104(TypeⅡ),and 571×104(Type Ⅲ) separately and two HPAMs with relative molecular mass of 1 200×104 and 3 800×104 respectively.The experiment results indicate that the viscoelasticity of HAPAM is better than that of HPAM.The storage modulus G' and the loss modulus G″ for HAPAM solutions are also larger than those for HPAM.Comparing the rheological curves of different HAPAM types,it is found that the viscosity of typeⅡ and type Ⅲ is almost same at different shear rates while the viscosity of type I is the lower than that of Types Ⅱ and Ⅲ.The storage modulus G' and the loss modulus G″ for three types of HAPAM were measured in low oscillation frequency range,and the results show that G' is greater than G″ for all three different types of HAPAM,but their loss modulus is almost same,and the G' is in the order of type Ⅱ>type Ⅲ>type I.In addition,the G' and G″ increase with aging time for all three HAPAM solutions were stayed at different days.The viscoelasticity of type Ⅰ reaches the highest value when aging time is 9 d at 45 ℃,but it is 7 d for type Ⅱ and type Ⅲ.The different viscoelasticity properties can be attributed to self-organization supermolecule networks which is formed by hydrophobic association of HAPAM molecular and molecular chain entanglement.