In order to explore the remediation effects of lignite and biochar on Zn-contaminated soil,this experiment studied the impacts of adding lignite and biochar on soil respiration,soil enzyme activity,and organic carbon ...In order to explore the remediation effects of lignite and biochar on Zn-contaminated soil,this experiment studied the impacts of adding lignite and biochar on soil respiration,soil enzyme activity,and organic carbon in Zn-contaminated soil through soil culture experiments,which provided a theoretical basis for the remediation and improvement as well as for the development and utilization of Zn-contaminated soil.The study was an L8(4×2^(2))orthogonal experimental design with eight treatments,in which there were four levels of Zn contamination concentration(Z0:0;Z1:125 mg•kg^(-1);Z2:250 mg•kg^(-1);Z3:500 mg•kg^(-1)),low-Zn(125-250 mg•kg^(-1))and high-Zn(500 mg•kg^(-1)),two levels of lignite(H0:0;H1:13.33 g•kg^(-1)),two levels of biochar(C0:0;C1:3.33 g•kg^(-1)),with four replicates per treatment.The results showed that lignite or biochar and their interaction had extremely significant effects on both respiration rate and accumulation in Zn-contaminated soil.Among the high Zn-contaminated treatments,the mixed application of lignite and biochar(Z3H1C1 treatment)had the fastest soil respiration rate and the highest soil respiration accumulation.Lignite,biochar and their interaction had significant or extremely significant effects on sucrase,catalase and polyphenol oxidase activities in Zn-contaminated soil.Among the high Zn-contaminated treatments(Z3),the addition of biochar alone had the most significant effects on the increase of soil sucrase and catalase enzyme activities,while the mixed application of lignite and biochar had the most significant effects on the increase of soil polyphenol oxidase activity.Lignite,biochar and their interaction had significant or extremely significant effects on the total organic carbon,active organic carbon and microbial carbon content of Zn-contaminated soils.Soil total organic carbon content in general peaked at day 80.Among the high Zn-contaminated treatments,the addition of biochar alone had the most significant effects on the total organic carbon content of the soil,while the mixed application of lignite and biochar had the most significant effect on the microbiomass carbon content.展开更多
Biochar is widely used to improve soil physical properties and carbon sequestration. However, few studies focuse on the impact of maize stalk biochar on labile organic carbon(LOC) pool and the relationship between phy...Biochar is widely used to improve soil physical properties and carbon sequestration. However, few studies focuse on the impact of maize stalk biochar on labile organic carbon(LOC) pool and the relationship between physical properties and LOC fractions. A field positioning experiment was performed in Mollisols region of Northeast China to evaluate the influence of maize stalk biochar on the spatial distribution and temporal changes of physical properties and LOC fractions. Maize stalk biochar treatments included C1(1.5 kg·hm^(-2)), C2(3 kg·hm^(-2)), C3(15 kg·hm^(-2)), C4(30 kg·hm^(-2)), and CK(0). The results showed that maize stalk biochar increased soil water contents(SWC) and soil porosity(SP), but reduced bulk density(BD). Maize stalk biochar reduced dissolved organic carbon(DOC) contents in the 0-20 cm soil layer, ranging from 0.25 g·kg^(-1) to 0.31 g·kg^(-1) in harvest period, while increased in the 20-40 cm soil layer. In addition, the application of biochar had a significant impact on the spatial distribution and temporal change of SWC, BD, SP, DOC, hot-water extractable carbon(HWC), acid hydrolyzed organic carbon(AHC Ⅰ, Ⅱ), and readily oxidized organic carbon(ROC). High amounts of maize stalk biochar up-regulated the contents of soil organic carbon SOC, HWC, AHC Ⅰ, AHC Ⅱ, and ROC. In addition, SWC and SP were the key physical factors to affect LOC fractions. In conclusions, maize stalk biochar could improve physical properties, and then influence LOC fractions, and maize stalk biochar could be used as an organic amendment for restoring degraded soils governed by their rates of addition.展开更多
Corrosion caused by sulfate-reducing prokaryotes(SRP)is an important cause of magnesium alloy anode failure in oil pipeline.In this study,the effects of Desulfovibrio sp.HQM3 on the corrosion behavior of AZ31B magnesi...Corrosion caused by sulfate-reducing prokaryotes(SRP)is an important cause of magnesium alloy anode failure in oil pipeline.In this study,the effects of Desulfovibrio sp.HQM3 on the corrosion behavior of AZ31B magnesium alloy anode in organic carbon sources with different contents in simulated tidal flat environment were analyzed using weight loss test,surface analysis and electrochemical analysis technologies.The results showed that the weight loss rate of coupons in low carbon sources contents(0%,1%,10%)was higher than that in 100%carbon sources.Electrochemical analyses showed that the corrosion current density(J_(corr))under low carbon sources contents was larger,while the charge transfer resistance(R_(ct))was lower,leading to a higher corrosion rate compared to those under 100%carbon sources content.Observations from scanning electron microscopy(SEM)and confocal laser scanning microscopy(CLSM)revealed more severe pitting corrosion on the alloy surface in the absence of carbon sources.In addition,a large number of nanowires were observed between bacteria on the alloy surface using SEM.Combined with thermodynamic calculations,it was demonstrated that the corrosion of coupons by Desulfovibrio sp.HQM3 in the absence of carbon sources was achieved through extracellular electron transfer.展开更多
To investigate the influence of the activated carbon pore structure on the adsorption of volatile organic compounds (VOCs), three commercial activated carbon samples were chosen. The fixed-bed thermostatic adsorptio...To investigate the influence of the activated carbon pore structure on the adsorption of volatile organic compounds (VOCs), three commercial activated carbon samples were chosen. The fixed-bed thermostatic adsorption experiments were conducted under certain conditions, where toluene, acetone, and 1, 2-dichloroethane acted as adsorbents. Then, the incidence relation between the experimental results and the activated carbon pore structure was analyzed. After that, the results of the correlation analysis were verified in accordance with fractal theory and adsorption characteristic curve analysis. The results show that the pore diameter gradient is helpful for strengthening the intemal diffusion. Under the same condition, the adsorption of organic gases tends to be selective, and the positions of toluene, acetone and 1, 2-dichloroethane adsorbed on the activated carbon are mainly in the ranges of 1.27-1.49 nm, 0.67-0.84 nm and 1.39-1.75 nm, respectively. The relationship between adsorption capacity and activated carbon pore volume can accurately explain the spreading process of the adsorbents in the activated carbon.展开更多
The three-pool and first-order model separates the mineralizable organic carbon into active,slow,and passive carbon pools.This paper used the model and decomposition curves of the soil organic carbon to fit the active...The three-pool and first-order model separates the mineralizable organic carbon into active,slow,and passive carbon pools.This paper used the model and decomposition curves of the soil organic carbon to fit the active pool and its decomposition rate,slow pool and its decomposition rate.The results showed that the size of the active pool from different profiles accounted for 2.09%-3.08% of the total soil organic carbon and the mean residue time was 3.57-17.21 days.And the size of the slow pool accounted for 3.19%-43.55% and the mean residue time was 1.12-4.94 years.Acid hydrolysis(6M HCl) was used to fractionate the passive organic carbon,which accounted for 50.83%-94.44% of the total soil organic carbon.展开更多
Two-factor analysis of variance and redundancy analysis were used to analyze the characte-ristics of soil organic carbon total nitrogen storage in garden land,forestland,grassland,farmland,and bare land in the Dachunh...Two-factor analysis of variance and redundancy analysis were used to analyze the characte-ristics of soil organic carbon total nitrogen storage in garden land,forestland,grassland,farmland,and bare land in the Dachunhe watershed of Jinning District,Kunming City,Yunnan Province,China.The effects of the soil organic carbon,total nitrogen stratification ratio,soil physical and chemical factors on the storage characteristics of organic carbon and total nitrogen of different land-use types were analyzed.The results show that the rates of carbon and nitrogen stratification in soil from 0-20 cm and 40-60 cm of the same land-use types differed are statistically significant(P<0.05).The organic carbon and total nitrogen stratification ratio SR1 of garden land soil are 38.5%and 25.3%,respectively,which are higher than SR^(2).The soil organic carbon and total nitrogen stratification ratio SR^(2) of different land-use types are greater than SR1.There are statistically significant differences in the SR^(2) soil organic carbon and total nitrogen stratification ratios(P<0.05).Soil organic carbon and total nitrogen storage of diffe-rent land-use types gradually decrease with increasing soil depth,with the maximum soil organic carbon and total nitrogen storage in the 0-20 cm soil layer.Soil organic carbon and total nitrogen sto-rage at the same soil depth are significantly different(P<0.05).Soil organic carbon and total nitrogen storage in the garden land are greater than those in the other land-use types.Soil organic carbon and total nitrogen storage in 0-20 cm garden land are 4.96 and 3.19 times than those in bare land,respectively;soil organic carbon and total nitrogen storage are explained by 93.66%and 1.53%in redundancy analysis RDA1 and RDA2,respectively.All physicochemical factors except Available Phosphorus and pH are statistically significance with carbon and nitrogen storage(P<0.05).Soil cationic exchange capacity,Available Phosphorus,C/N ratio,and Moisture Content are positively correlated with organic carbon and total nitrogen storage.In contrast,soil Bulk Density is negatively correlated with organic carbon storage and total nitrogen storage.Available Phosphorus,C/N ratio,and Moisture Content are the main factors promoting soil organic carbon and total nitrogen accumulation.展开更多
Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and ...Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and SEM-EDX. The hydrophilic organic salts with different properties were introduced into activated carbon and significantly affected the properties of the samples.During adsorption experiments, the water vapor adsorption amount in modified samples increases by 0.57-17.12 times in temperature range from 303 to 323 K and at relative pressure below 0.50. Water molecules combined with surface hydrophilic groups through H-bonding exhibit good thermo stability. The effects of temperature, oxygen content and properties of the hydrophilic organic salts on water vapor adsorption were studied. It is indicated that water vapor adsorption in modified samples is mainly affected by the surface oxygen content. The carboxylate radicals in the hydrophilic organic salts greatly affect the micropore structure of the modified samples, while the metal ions in them exhibit limited influence. Different adsorption capacity of modified samples can be explained with the electronegativity of elements presented by Pauling.展开更多
A better understanding of soil carbon(C)distribution within aggregate fractions is essential to evaluating the potential of no-till for sustaining productivity and protecting the environment.A meta-analysis on 744 com...A better understanding of soil carbon(C)distribution within aggregate fractions is essential to evaluating the potential of no-till for sustaining productivity and protecting the environment.A meta-analysis on 744 comparisons from 34 studies was conducted to determine the effects of three different tillage treatments(conventional mouldbould ploughing tillage(CT),reduced tillage(RT)and no tillage(NT))on water-stable aggregate size distribution,soil C concentration in aggregate fractions.The meta-analysis indicates that compared with CT treatment,NT/RT significantly(P<0.05)increases macro-aggregate above 20 cm by 20.9%-82.2%(>2.00 mm)and 5.9%-19.1%(0.25-2.00 mm),whereas NT/RT significantly reduces micro-aggregate and silt clay fractions above 20 cm.NT/RT significantly(P<0.05)increases the SOC in macro-aggregate(>0.25 mm)and micro-aggregate(<0.25 mm)size classes above 20 cm soil depth compared with CT.The results suggest that soil sampling depth should be considered to evaluate the influence of tillage systems on the distribution of soil aggregate,and the content of aggregate-associated C content.展开更多
Synthesis of organic fuels from carbon dioxide and hydrogen is analysed,in terms of energy recovery efficiency,and the required energy input for electrolysis of water.This electrical energy is related to the thermal e...Synthesis of organic fuels from carbon dioxide and hydrogen is analysed,in terms of energy recovery efficiency,and the required energy input for electrolysis of water.This electrical energy is related to the thermal energy required in a power station.A method is described to recover heat from energy-producing reactions in the fuel synthesis process,which can then be used to reduce the electrical energy requirement for electrolysis.By co-locating the fuel synthesis plant with a thermal power station,primary(thermal) energy can be used to produce high temperature steam,with a lower electrical requirement for electrolytic production of hydrogen.This can make more efficient use of the primary energy than a thermodynamic engine.Comparison is made with alternative fuels,in terms of energy budget,sustainability,carbon dioxide emissions,etc.The energy security benefits of advanced fuel synthesis are also identified.展开更多
Electrolytic conductivity, viscosity and electrochemical behavior were investigated for organic electrolytes based on PC(Propylene carbonate), MAN(Methoxy acetonitrile) and GBL(γ-Butyrolactone) solvents. It was...Electrolytic conductivity, viscosity and electrochemical behavior were investigated for organic electrolytes based on PC(Propylene carbonate), MAN(Methoxy acetonitrile) and GBL(γ-Butyrolactone) solvents. It was found that 1 mol/L Et4NBF4-MAN had the highest conductivity, lowest viscosity and acceptable potential window. The specific capacitance and energy density obtained from the capacitor using 1 mol/L Et4NBF4-MAN as electrolyte were the highest among all the tested electrolytes.(1 mol/L) Et4NBF4-GBL also seemed promising to be used in electric double-layer capacitor (EDLCs).展开更多
Copper-nickel alloys can suffer severe localized corrosion in marine environments containing sulfate-reducing bacteria(SRB),but the effect of SRB on the under-deposit corrosion of copper-nickel alloys is unknown.In th...Copper-nickel alloys can suffer severe localized corrosion in marine environments containing sulfate-reducing bacteria(SRB),but the effect of SRB on the under-deposit corrosion of copper-nickel alloys is unknown.In this work,the corrosion behavior of B10 copper-nickel alloy beneath a deposit caused by SRB with carbon source starvation in artificial seawater was studied based on electrochemical measurements and surface analysis.Results demonstrate that SRB with an organic carbon starvation can survive in artificial water but most SRB cells have died.The survived SRB cells can attach to the bare and deposit-covered B10 copper-nickel alloy,leading to the corrosion acceleration.Due to the limitation of organic carbon source,the pitting corrosion of B10 copper-nickel alloy caused by SRB is not serious.However,serious pitting corrosion of the deposit-covered B10 copper-nickel alloy can be found both in abiotic and biotic conditions,and the pitting corrosion and uniform corrosion are further accelerated by SRB.There is a galvanic effect between the bare and deposit-covered specimens in the presence of SRB in the early stage but the galvanic effect after 5 d of testing can be neglected due to the low OCP difference values.展开更多
基金Supported by the Special Fund for Agro-scientific Research in Public Interest in China(201503119-06-01)。
文摘In order to explore the remediation effects of lignite and biochar on Zn-contaminated soil,this experiment studied the impacts of adding lignite and biochar on soil respiration,soil enzyme activity,and organic carbon in Zn-contaminated soil through soil culture experiments,which provided a theoretical basis for the remediation and improvement as well as for the development and utilization of Zn-contaminated soil.The study was an L8(4×2^(2))orthogonal experimental design with eight treatments,in which there were four levels of Zn contamination concentration(Z0:0;Z1:125 mg•kg^(-1);Z2:250 mg•kg^(-1);Z3:500 mg•kg^(-1)),low-Zn(125-250 mg•kg^(-1))and high-Zn(500 mg•kg^(-1)),two levels of lignite(H0:0;H1:13.33 g•kg^(-1)),two levels of biochar(C0:0;C1:3.33 g•kg^(-1)),with four replicates per treatment.The results showed that lignite or biochar and their interaction had extremely significant effects on both respiration rate and accumulation in Zn-contaminated soil.Among the high Zn-contaminated treatments,the mixed application of lignite and biochar(Z3H1C1 treatment)had the fastest soil respiration rate and the highest soil respiration accumulation.Lignite,biochar and their interaction had significant or extremely significant effects on sucrase,catalase and polyphenol oxidase activities in Zn-contaminated soil.Among the high Zn-contaminated treatments(Z3),the addition of biochar alone had the most significant effects on the increase of soil sucrase and catalase enzyme activities,while the mixed application of lignite and biochar had the most significant effects on the increase of soil polyphenol oxidase activity.Lignite,biochar and their interaction had significant or extremely significant effects on the total organic carbon,active organic carbon and microbial carbon content of Zn-contaminated soils.Soil total organic carbon content in general peaked at day 80.Among the high Zn-contaminated treatments,the addition of biochar alone had the most significant effects on the total organic carbon content of the soil,while the mixed application of lignite and biochar had the most significant effect on the microbiomass carbon content.
基金Supported by the National Natural Science Foundation of China Project(31770582)。
文摘Biochar is widely used to improve soil physical properties and carbon sequestration. However, few studies focuse on the impact of maize stalk biochar on labile organic carbon(LOC) pool and the relationship between physical properties and LOC fractions. A field positioning experiment was performed in Mollisols region of Northeast China to evaluate the influence of maize stalk biochar on the spatial distribution and temporal changes of physical properties and LOC fractions. Maize stalk biochar treatments included C1(1.5 kg·hm^(-2)), C2(3 kg·hm^(-2)), C3(15 kg·hm^(-2)), C4(30 kg·hm^(-2)), and CK(0). The results showed that maize stalk biochar increased soil water contents(SWC) and soil porosity(SP), but reduced bulk density(BD). Maize stalk biochar reduced dissolved organic carbon(DOC) contents in the 0-20 cm soil layer, ranging from 0.25 g·kg^(-1) to 0.31 g·kg^(-1) in harvest period, while increased in the 20-40 cm soil layer. In addition, the application of biochar had a significant impact on the spatial distribution and temporal change of SWC, BD, SP, DOC, hot-water extractable carbon(HWC), acid hydrolyzed organic carbon(AHC Ⅰ, Ⅱ), and readily oxidized organic carbon(ROC). High amounts of maize stalk biochar up-regulated the contents of soil organic carbon SOC, HWC, AHC Ⅰ, AHC Ⅱ, and ROC. In addition, SWC and SP were the key physical factors to affect LOC fractions. In conclusions, maize stalk biochar could improve physical properties, and then influence LOC fractions, and maize stalk biochar could be used as an organic amendment for restoring degraded soils governed by their rates of addition.
基金Project(42076043) supported by the National Natural Science Foundation of ChinaProject(ZR2023ZD31) supported by the Major Basic Research Project of Natural Science Foundation of Shandong Province,ChinaProject(2023VEA0007) supported by the Chinese Academy of Sciences President’s International Fellowship Initiative。
文摘Corrosion caused by sulfate-reducing prokaryotes(SRP)is an important cause of magnesium alloy anode failure in oil pipeline.In this study,the effects of Desulfovibrio sp.HQM3 on the corrosion behavior of AZ31B magnesium alloy anode in organic carbon sources with different contents in simulated tidal flat environment were analyzed using weight loss test,surface analysis and electrochemical analysis technologies.The results showed that the weight loss rate of coupons in low carbon sources contents(0%,1%,10%)was higher than that in 100%carbon sources.Electrochemical analyses showed that the corrosion current density(J_(corr))under low carbon sources contents was larger,while the charge transfer resistance(R_(ct))was lower,leading to a higher corrosion rate compared to those under 100%carbon sources content.Observations from scanning electron microscopy(SEM)and confocal laser scanning microscopy(CLSM)revealed more severe pitting corrosion on the alloy surface in the absence of carbon sources.In addition,a large number of nanowires were observed between bacteria on the alloy surface using SEM.Combined with thermodynamic calculations,it was demonstrated that the corrosion of coupons by Desulfovibrio sp.HQM3 in the absence of carbon sources was achieved through extracellular electron transfer.
基金Projects(20976200)supported by the National Natural Science Foundation of China
文摘To investigate the influence of the activated carbon pore structure on the adsorption of volatile organic compounds (VOCs), three commercial activated carbon samples were chosen. The fixed-bed thermostatic adsorption experiments were conducted under certain conditions, where toluene, acetone, and 1, 2-dichloroethane acted as adsorbents. Then, the incidence relation between the experimental results and the activated carbon pore structure was analyzed. After that, the results of the correlation analysis were verified in accordance with fractal theory and adsorption characteristic curve analysis. The results show that the pore diameter gradient is helpful for strengthening the intemal diffusion. Under the same condition, the adsorption of organic gases tends to be selective, and the positions of toluene, acetone and 1, 2-dichloroethane adsorbed on the activated carbon are mainly in the ranges of 1.27-1.49 nm, 0.67-0.84 nm and 1.39-1.75 nm, respectively. The relationship between adsorption capacity and activated carbon pore volume can accurately explain the spreading process of the adsorbents in the activated carbon.
基金Supported by the Work Project of China Geological Survey (1212010911062)Guangxi Zhuang Autonomous Region Innovation Project (0842008)National Natural Science Foundation (40872213)
文摘The three-pool and first-order model separates the mineralizable organic carbon into active,slow,and passive carbon pools.This paper used the model and decomposition curves of the soil organic carbon to fit the active pool and its decomposition rate,slow pool and its decomposition rate.The results showed that the size of the active pool from different profiles accounted for 2.09%-3.08% of the total soil organic carbon and the mean residue time was 3.57-17.21 days.And the size of the slow pool accounted for 3.19%-43.55% and the mean residue time was 1.12-4.94 years.Acid hydrolysis(6M HCl) was used to fractionate the passive organic carbon,which accounted for 50.83%-94.44% of the total soil organic carbon.
基金Natural Science Foundation of China(51979134,51779113)Yunnan Provincial Education Department Scientific Research Fund Project(2021J0164)+4 种基金Open Fund Project of Yunnan Provincial Key Laboratory of Highland Wetland Protection and Restoration and Ecological Services(202105AG070002)Provincial Innovation Team on Environmental Pollution and Food Safety and Human Health,Southwest Forestry University(2005AE160017)A Study of Terrestrial Animal Habitats in Li Ziping National Nature Reserve,Sichuan Province(2021ZD0125)The Construction Project of Key Disciplines with Advantages and Characteristics(Ecology)in Yunnan UniversitiesResearch Project of Key Laboratory of Soil Erosion and Control in Yunnan University。
文摘Two-factor analysis of variance and redundancy analysis were used to analyze the characte-ristics of soil organic carbon total nitrogen storage in garden land,forestland,grassland,farmland,and bare land in the Dachunhe watershed of Jinning District,Kunming City,Yunnan Province,China.The effects of the soil organic carbon,total nitrogen stratification ratio,soil physical and chemical factors on the storage characteristics of organic carbon and total nitrogen of different land-use types were analyzed.The results show that the rates of carbon and nitrogen stratification in soil from 0-20 cm and 40-60 cm of the same land-use types differed are statistically significant(P<0.05).The organic carbon and total nitrogen stratification ratio SR1 of garden land soil are 38.5%and 25.3%,respectively,which are higher than SR^(2).The soil organic carbon and total nitrogen stratification ratio SR^(2) of different land-use types are greater than SR1.There are statistically significant differences in the SR^(2) soil organic carbon and total nitrogen stratification ratios(P<0.05).Soil organic carbon and total nitrogen storage of diffe-rent land-use types gradually decrease with increasing soil depth,with the maximum soil organic carbon and total nitrogen storage in the 0-20 cm soil layer.Soil organic carbon and total nitrogen sto-rage at the same soil depth are significantly different(P<0.05).Soil organic carbon and total nitrogen storage in the garden land are greater than those in the other land-use types.Soil organic carbon and total nitrogen storage in 0-20 cm garden land are 4.96 and 3.19 times than those in bare land,respectively;soil organic carbon and total nitrogen storage are explained by 93.66%and 1.53%in redundancy analysis RDA1 and RDA2,respectively.All physicochemical factors except Available Phosphorus and pH are statistically significance with carbon and nitrogen storage(P<0.05).Soil cationic exchange capacity,Available Phosphorus,C/N ratio,and Moisture Content are positively correlated with organic carbon and total nitrogen storage.In contrast,soil Bulk Density is negatively correlated with organic carbon storage and total nitrogen storage.Available Phosphorus,C/N ratio,and Moisture Content are the main factors promoting soil organic carbon and total nitrogen accumulation.
基金Projects(21376274,51206192)supported by the National Natural Science Foundation of China
文摘Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials. Properties of the samples were analyzed by surface area analyzer and SEM-EDX. The hydrophilic organic salts with different properties were introduced into activated carbon and significantly affected the properties of the samples.During adsorption experiments, the water vapor adsorption amount in modified samples increases by 0.57-17.12 times in temperature range from 303 to 323 K and at relative pressure below 0.50. Water molecules combined with surface hydrophilic groups through H-bonding exhibit good thermo stability. The effects of temperature, oxygen content and properties of the hydrophilic organic salts on water vapor adsorption were studied. It is indicated that water vapor adsorption in modified samples is mainly affected by the surface oxygen content. The carboxylate radicals in the hydrophilic organic salts greatly affect the micropore structure of the modified samples, while the metal ions in them exhibit limited influence. Different adsorption capacity of modified samples can be explained with the electronegativity of elements presented by Pauling.
基金National Natural Science Foundation of China(31860361)The National Natural Science Foundation of Ningxia Hui Autonomous Region(2019AAC03055)+1 种基金The Science and Technology Young Talent Project of Ningxia Hui Autonomous Region(TJGC2019075)The Young Project from Ningxia University。
文摘A better understanding of soil carbon(C)distribution within aggregate fractions is essential to evaluating the potential of no-till for sustaining productivity and protecting the environment.A meta-analysis on 744 comparisons from 34 studies was conducted to determine the effects of three different tillage treatments(conventional mouldbould ploughing tillage(CT),reduced tillage(RT)and no tillage(NT))on water-stable aggregate size distribution,soil C concentration in aggregate fractions.The meta-analysis indicates that compared with CT treatment,NT/RT significantly(P<0.05)increases macro-aggregate above 20 cm by 20.9%-82.2%(>2.00 mm)and 5.9%-19.1%(0.25-2.00 mm),whereas NT/RT significantly reduces micro-aggregate and silt clay fractions above 20 cm.NT/RT significantly(P<0.05)increases the SOC in macro-aggregate(>0.25 mm)and micro-aggregate(<0.25 mm)size classes above 20 cm soil depth compared with CT.The results suggest that soil sampling depth should be considered to evaluate the influence of tillage systems on the distribution of soil aggregate,and the content of aggregate-associated C content.
文摘Synthesis of organic fuels from carbon dioxide and hydrogen is analysed,in terms of energy recovery efficiency,and the required energy input for electrolysis of water.This electrical energy is related to the thermal energy required in a power station.A method is described to recover heat from energy-producing reactions in the fuel synthesis process,which can then be used to reduce the electrical energy requirement for electrolysis.By co-locating the fuel synthesis plant with a thermal power station,primary(thermal) energy can be used to produce high temperature steam,with a lower electrical requirement for electrolytic production of hydrogen.This can make more efficient use of the primary energy than a thermodynamic engine.Comparison is made with alternative fuels,in terms of energy budget,sustainability,carbon dioxide emissions,etc.The energy security benefits of advanced fuel synthesis are also identified.
文摘Electrolytic conductivity, viscosity and electrochemical behavior were investigated for organic electrolytes based on PC(Propylene carbonate), MAN(Methoxy acetonitrile) and GBL(γ-Butyrolactone) solvents. It was found that 1 mol/L Et4NBF4-MAN had the highest conductivity, lowest viscosity and acceptable potential window. The specific capacitance and energy density obtained from the capacitor using 1 mol/L Et4NBF4-MAN as electrolyte were the highest among all the tested electrolytes.(1 mol/L) Et4NBF4-GBL also seemed promising to be used in electric double-layer capacitor (EDLCs).
基金Project(2023A1515012146)supported by the Guangdong Basic and Applied Research Foundation,ChinaProjects(52271083,51901253,52371059,52071091)supported by the National Natural Science Foundation of ChinaProject(2023HA-TYUTKFYF029)supported by the Open Research Fund from the Hai’an&Taiyuan University of Technology Advanced Manufacturing and Intelligent Equipment Industrial Research Institute,China。
文摘Copper-nickel alloys can suffer severe localized corrosion in marine environments containing sulfate-reducing bacteria(SRB),but the effect of SRB on the under-deposit corrosion of copper-nickel alloys is unknown.In this work,the corrosion behavior of B10 copper-nickel alloy beneath a deposit caused by SRB with carbon source starvation in artificial seawater was studied based on electrochemical measurements and surface analysis.Results demonstrate that SRB with an organic carbon starvation can survive in artificial water but most SRB cells have died.The survived SRB cells can attach to the bare and deposit-covered B10 copper-nickel alloy,leading to the corrosion acceleration.Due to the limitation of organic carbon source,the pitting corrosion of B10 copper-nickel alloy caused by SRB is not serious.However,serious pitting corrosion of the deposit-covered B10 copper-nickel alloy can be found both in abiotic and biotic conditions,and the pitting corrosion and uniform corrosion are further accelerated by SRB.There is a galvanic effect between the bare and deposit-covered specimens in the presence of SRB in the early stage but the galvanic effect after 5 d of testing can be neglected due to the low OCP difference values.