Ice-going ships play a crucial role in polar transportation and resource extraction.Different from the existing modeling approach which assumes that ships remain stationary,dynamic overset grid technology and DFBI(Dyn...Ice-going ships play a crucial role in polar transportation and resource extraction.Different from the existing modeling approach which assumes that ships remain stationary,dynamic overset grid technology and DFBI(Dynamic Fluid-Body Interaction)method are employed in this paper to enable the free-running motion of the ship in modeling.A numerical model capable of simulating a ship navigating through pack ice area is proposed,which uses Computational Fluid Dynamics(CFD)method to solve the flow field and applies the Discrete Element Method(DEM)to simulate ship-ice and ice-ice interactions.Besides,the proposed high-precision method for generating pack ice area can be used in conjunction with the proposed numerical model.By comparing the numerical results with the available model test data and experimental observations,the effectiveness of the numerical model is validated,demonstrating its strong capability of predicting resistance and simulating ship navigation in pack ice,as well as its significant potential and applicability for further studies.展开更多
In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interact...In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users.展开更多
Dynamic soaring,inspired by the wind-riding flight of birds such as albatrosses,is a biomimetic technique which leverages wind fields to enhance the endurance of unmanned aerial vehicles(UAVs).Achieving a precise soar...Dynamic soaring,inspired by the wind-riding flight of birds such as albatrosses,is a biomimetic technique which leverages wind fields to enhance the endurance of unmanned aerial vehicles(UAVs).Achieving a precise soaring trajectory is crucial for maximizing energy efficiency during flight.Existing nonlinear programming methods are heavily dependent on the choice of initial values which is hard to determine.Therefore,this paper introduces a deep reinforcement learning method based on a differentially flat model for dynamic soaring trajectory planning and optimization.Initially,the gliding trajectory is parameterized using Fourier basis functions,achieving a flexible trajectory representation with a minimal number of hyperparameters.Subsequently,the trajectory optimization problem is formulated as a dynamic interactive process of Markov decision-making.The hyperparameters of the trajectory are optimized using the Proximal Policy Optimization(PPO2)algorithm from deep reinforcement learning(DRL),reducing the strong reliance on initial value settings in the optimization process.Finally,a comparison between the proposed method and the nonlinear programming method reveals that the trajectory generated by the proposed approach is smoother while meeting the same performance requirements.Specifically,the proposed method achieves a 34%reduction in maximum thrust,a 39.4%decrease in maximum thrust difference,and a 33%reduction in maximum airspeed difference.展开更多
With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Ni...With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Nickel-based catalysts are renowned for their outstanding activity and selectivity in this process.The impact of metal-support interaction(MSI),on Ni-based catalyst performance has been extensively researched and debated recently.This paper reviews the recent research progress of MSI on Ni-based catalysts and their characterization and modulation strategies in catalytic reactions.From the perspective of MSI,the effects of different carriers(metal oxides,carbon materials and molecular sieves,etc.)are introduced on the dispersion and surface structure of Ni active metal particles,and the effect of MSI on the activity and stability of DRM reactions on Ni-based catalysts is discussed in detail.Future research should focus on better understanding and controlling MSI to improve the performance and durability of nickel-based catalysts in CH_(4)-CO_(2)reforming,advancing cleaner energy technologies.展开更多
Verticillium wilt,caused by the infamous pathogen Verticillium dahliae,presents a primary constraint on cotton cul-tivation worldwide.The complexity of disease resistance in cotton and the largely unexplored interacti...Verticillium wilt,caused by the infamous pathogen Verticillium dahliae,presents a primary constraint on cotton cul-tivation worldwide.The complexity of disease resistance in cotton and the largely unexplored interaction dynamics between the cotton plant host and V.dahliae pathogen pose a crucial predicament for effectively managing cotton Verticillium wilt.Nevertheless,the most cost-effective approach to controlling this disease involves breeding and cul-tivating resistant cotton varieties,demanding a meticulous analysis of the mechanisms underlying cotton’s resistance to Verticillium wilt and the identification of pivotal genes.These aspects constitute focal points in disease-resistance breeding programs.In this review,we comprehensively discuss genetic inheritance associated with Verticillium wilt resistance in cotton,the advancements in molecular markers for disease resistance,the functional investiga-tion of resistance genes in cotton,the analysis of pathogenicity genes in V.dahliae,as well as the intricate interplay between cotton and this fungus.Moreover,we delve into the future prospects of cutting-edge research on cotton Verticillium wilt,aiming to proffer valuable insights for the effective management of this devastating fungus.展开更多
The seminal report ofα-diimine palladium and nickel catalysts in 1995 represented a major breakthrough in the preparation of functionalized polyolefin materials.Owing to the high abundance and low cost of nickel,nick...The seminal report ofα-diimine palladium and nickel catalysts in 1995 represented a major breakthrough in the preparation of functionalized polyolefin materials.Owing to the high abundance and low cost of nickel,nickel-based catalysts have great application prospects in the industrialization process of olefin coordination polymerization.In this work,various N-aryl substituents with different electronic effects were synthesized and introduced intoα-diimine ligands.The aspreparedα-diimine nickel catalysts showed high polymerization activity(0.9×10^(7)–3.0×10^(7)g·mol^(−1)·h^(−1))in ethylene polymerization,generating polyethylene products with adjustable molecular weights(Mn values:7.4×10^(4)–146.9×10^(4)g·mol^(−1))and branching densities(31/1000 C–68/1000 C).The resulting polyethylene products showed excellent mechanical properties,with high tensile strength(up to 25.0 MPa)and high strain at break values(up to 3890%).The copolymerization of ethylene and polar monomers can also be achieved by these nicekel complexes,ultimately preparing functionalized polyolefins.展开更多
To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA...To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA)and cognitive reliability and error analysis method(CREAM)is proposed.STPACREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically.The common performance conditions(CPC)of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out.Taking the head-up display(HUD)system interaction process as an example,a case analysis is carried out,the layered safety control structure and formal model of the HUD interaction process are established.For the interactive behavior“Pilots approaching with HUD”,four unsafe control actions and35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed.The results show that HUD's HCI level gradually improves as the scores of CPC increase,and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI.Through case analysis,it is shown that STPACREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.展开更多
Inducing the classic strong metal-support interaction(SMSI)is an effective approach to enhance the performance of supported metal catalysts by encapsulating the metal nanoparticles(NPs)with supports.Conventional therm...Inducing the classic strong metal-support interaction(SMSI)is an effective approach to enhance the performance of supported metal catalysts by encapsulating the metal nanoparticles(NPs)with supports.Conventional thermal reduction method for inducing SMSI processes is often accompanied by undesirable structural evolution of metal NPs.In this study,a mild electrochemical method has been developed as a new approach to induce SMSI,using the cable structured core@shell CNT@SnO_(2) loaded Pt NPs as a proof of concept.The induced SnO_(x) encapsulation layer on the surface of Pt NPs can protect Pt NPs from the poisoned of CO impurity in hydrogen oxidation reaction(HOR),and the HOR current density could still maintain 85% for 2000 s with 10,000 ppm CO in H_(2),while the commercial Pt/C is completely inactivated.In addition,the electrons transfer from SnO_(x) to Pt NPs improved the HOR activity of the E-Pt-CNT@SnO_(2),achieving the excellent exchange current density of 1.55 A·mgPt^(-1).In situ Raman spectra and theoretical calculations show that the key to the electrochemical-method-induced SMSI is the formation of defects and the migration of SnO_(x) caused by the electrochemical redox operation,and the weakening the SneO bond strength by Pt NPs.展开更多
In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the ...In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.展开更多
The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the rel...The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.展开更多
In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-p...In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-propeller is studied by analyzing the complex force situation during ship navigation and building a MATLAB/Simulink simulation platform based on multi-environmental resistance,propeller efficiency,main engine power,fuel consumption,fuel consumption rate and EEOI calculation module.Considering the environmental factors of wind,wave and ice,the route is divided into sections,the calculation of main engine power,main engine fuel consumption and EEOI for each section is completed,and the speed design is optimized based on the simulation model for each section.Under the requirements of the voyage plan,the optimization results show that the energy efficiency operation index of the whole route is reduced by 3.114%and the fuel consumption is reduced by 9.17 t.展开更多
In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradien...In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradient method.Under the condition of standard Wolfe line search,the proposed search direction is the descent direction.For general nonlinear functions,the method is globally convergent.Finally,numerical results show that the proposed method is efficient.展开更多
As an advanced 4^(th) generation synchrotron radiation facility,the Shenzhen Innovation Light-source Facility(SILF)storage ring is based on multi-bend achromat(MBA)lattices,enabling one to two orders of magnitude redu...As an advanced 4^(th) generation synchrotron radiation facility,the Shenzhen Innovation Light-source Facility(SILF)storage ring is based on multi-bend achromat(MBA)lattices,enabling one to two orders of magnitude reduction in beam emittance compared to the 3^(rd) generation storage ring.This significantly enhance the radiation brightness and coherence.The multipole magnets of many types for SILF storage ring are under preliminary design,which require high integral field homogeneity.As a result,a dedicated pole tip optimization procedure with high efficiency is developed for quadrupole and sextupole magnets with Opera-2D^(■)python script.The procedure considers also the 3D field effect which makes the optimization more straightforward.In this paper,the design of the quadrupole and sextupole magnets for SILF storage ring is first presented,followed by a detailed description of the implemented pole shape optimization method.展开更多
In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and the...In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and therefore,the foreign exchange rate model is incorporated.Under the allowing of selling and borrowing,the problem of maximizing the expected exponential utility of terminal wealth is studied.By solving the corresponding Hamilton-Jacobi-Bellman equations,the optimal investment strategies and value functions are obtained.Finally,numerical analysis is presented.展开更多
The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flig...The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flight test duration and cost are established to set up the framework of flight test process.The top-level arrangement for flight test is optimized by multi-objective algorithm to reduce the duration and cost of flight test.In order to verify the necessity and validity of the mathematical models and the optimization algorithm of top-level arrangement,real flight test data is used to make an example calculation.Results show that the multi-objective optimization results of the top-level flight arrangement are better than the initial arrangement data,which can shorten the duration,reduce the cost,and improve the efficiency of flight test.展开更多
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base...In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.展开更多
[Objective]Under the combined impact of climate change and urbanization,urban rainstorm flood disasters occur frequently,seriously restricting urban safety and sustainable development.Relying on traditional grey infra...[Objective]Under the combined impact of climate change and urbanization,urban rainstorm flood disasters occur frequently,seriously restricting urban safety and sustainable development.Relying on traditional grey infrastructure such as pipe networks for urban stormwater management is not enough to deal with urban rainstorm flood disasters under extreme rainfall events.The integration of green,grey and blue systems(GGB-integrated system)is gradually gaining recognition in the field of global flood prevention.It is necessary to further clarify the connotation,technical and engineering implementation strategies of the GGB-integrated system,to provide support for the resilient city construction.[Methods]Through literature retrieval and analysis,the relevant research and progress related to the layout optimization and joint scheduling optimization of the GGBintegrated system were systematically reviewed.In response to existing limitations and future engineering application requirements,key supporting technologies including the utilization of overground emergency storage spaces,safety protection of underground important infrastructure and multi-departmental collaboration,were proposed.A layout optimization framework and a joint scheduling framework for the GGB-integrated system were also developed.[Results]Current research on layout optimization predominantly focuses on the integration of green system and grey system,with relatively fewer studies incorporating blue system infrastructure into the optimization process.Moreover,these studies tend to be on a smaller scale with simpler scenarios,which do not fully capture the complexity of real-world systems.Additionally,optimization objective tend to prioritize environmental and economic goals,while social and ecological factors are less frequently considered.Current research on joint scheduling optimization is often limited to small-scale plots,with insufficient attention paid to the entire system.There is a deficiency in method for real-time,automated determination of optimal control strategies for combinations of multiple system facilities based on actual rainfall-runoff processes.Additionally,the application of emergency facilities during extreme conditions is not sufficiently addressed.Furthermore,both layout optimization and joint scheduling optimization lack consideration of the mute feed effect of flood and waterlogging in urban,watershed and regional scales.[Conclusion]Future research needs to improve the theoretical framework for layout optimization and joint scheduling optimization of GGB-integrated system.Through the comprehensive application of the Internet of things,artificial intelligence,coupling model development,multi-scale analysis,multi-scenario simulation,and the establishment of multi-departmental collaboration mechanisms,it can enhance the flood resilience of urban areas in response to rainfall events of varying intensities,particularly extreme rainfall events.展开更多
The design of unmanned aerial vehicles(UAVs)revolves around the careful selection of materials that are both lightweight and robust.Carbon fiber-reinforced polymer(CFRP)emerged as an ideal option for wing construction...The design of unmanned aerial vehicles(UAVs)revolves around the careful selection of materials that are both lightweight and robust.Carbon fiber-reinforced polymer(CFRP)emerged as an ideal option for wing construction,with its mechanical qualities thoroughly investigated.In this study,we developed and optimized a conceptual UAV wing to withstand structural loads by establishing progressive composite stacking sequences,and we conducted a series of experimental characterizations on the resulting material.In the optimization phase,the objective was defined as weight reduction,while the Hashin damage criterion was established as the constraint for the optimization process.The optimization algorithm adaptively monitors regional damage criterion values,implementing necessary adjustments to facilitate the mitigation process in a cost-effective manner.Optimization of the analytical model using Simulia Abaqus~(TM)and a Python-based user-defined sub-routine resulted in a 34.7%reduction in the wing's structural weight after 45 iterative rounds.Then,the custom-developed optimization algorithm was compared with a genetic algorithm optimization.This comparison has demonstrated that,although the genetic algorithm explores numerous possibilities through hybridization,the custom-developed algorithm is more result-oriented and achieves optimization in a reduced number of steps.To validate the structural analysis,test specimens were fabricated from the wing's most critically loaded segment,utilizing the identical stacking sequence employed in the optimization studies.Rigorous mechanical testing revealed unexpectedly high compressive strength,while tensile and bending strengths fell within expected ranges.All observed failure loads remained within the established safety margins,thereby confirming the reliability of the analytical predictions.展开更多
An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and sa...An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and samples from the model to obtain the next generation,avoiding the problem of building-blocks destruction caused by crossover and mutation.Neighboring search from artificial bee colony algorithm(ABCA)is introduced to enhance the local optimization ability and improved to raise the speed of convergence.The probability model is modified by boundary correction and loss correction to enhance the robustness of the algorithm.The proposed IEDA is compared with other intelligent algorithms in relevant references.The results show that the proposed IEDA has faster convergence speed and stronger optimization ability,proving the feasibility and effectiveness of the algorithm.展开更多
On-machine measurement(OMM)stands out as a pivotal technology in complex curved surface adaptive machining.However,the complex structure inherent in workpieces poses a significant challenge as the stylus orientation f...On-machine measurement(OMM)stands out as a pivotal technology in complex curved surface adaptive machining.However,the complex structure inherent in workpieces poses a significant challenge as the stylus orientation frequently shifts during the measurement process.Consequently,a substantial amount of time is allocated to calibrating pre-travel error and probe movement.Furthermore,the frequent movement of machine tools also increases the influence of machine errors.To enhance both accuracy and efficiency,an optimization strategy for the OMM process is proposed.Based on the kinematic chain of the machine tools,the relationship between the angle combination of rotary axes,the stylus orientation,and the calibration position of pre-travel error is disclosed.Additionally,an OMM efficiency optimization model for complex curved surfaces is developed.This model is solved to produce the optimal efficiency angle combinations for each to-be-measured point.Within each angle combination,the effects of positioning errors on measurement results are addressed by coordinate system offset and measurement result compensation method.Finally,the experiments on an impeller are used to demonstrate the practical utility of the proposed method.展开更多
文摘Ice-going ships play a crucial role in polar transportation and resource extraction.Different from the existing modeling approach which assumes that ships remain stationary,dynamic overset grid technology and DFBI(Dynamic Fluid-Body Interaction)method are employed in this paper to enable the free-running motion of the ship in modeling.A numerical model capable of simulating a ship navigating through pack ice area is proposed,which uses Computational Fluid Dynamics(CFD)method to solve the flow field and applies the Discrete Element Method(DEM)to simulate ship-ice and ice-ice interactions.Besides,the proposed high-precision method for generating pack ice area can be used in conjunction with the proposed numerical model.By comparing the numerical results with the available model test data and experimental observations,the effectiveness of the numerical model is validated,demonstrating its strong capability of predicting resistance and simulating ship navigation in pack ice,as well as its significant potential and applicability for further studies.
文摘In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users.
基金support received by the National Natural Science Foundation of China(Grant Nos.52372398&62003272).
文摘Dynamic soaring,inspired by the wind-riding flight of birds such as albatrosses,is a biomimetic technique which leverages wind fields to enhance the endurance of unmanned aerial vehicles(UAVs).Achieving a precise soaring trajectory is crucial for maximizing energy efficiency during flight.Existing nonlinear programming methods are heavily dependent on the choice of initial values which is hard to determine.Therefore,this paper introduces a deep reinforcement learning method based on a differentially flat model for dynamic soaring trajectory planning and optimization.Initially,the gliding trajectory is parameterized using Fourier basis functions,achieving a flexible trajectory representation with a minimal number of hyperparameters.Subsequently,the trajectory optimization problem is formulated as a dynamic interactive process of Markov decision-making.The hyperparameters of the trajectory are optimized using the Proximal Policy Optimization(PPO2)algorithm from deep reinforcement learning(DRL),reducing the strong reliance on initial value settings in the optimization process.Finally,a comparison between the proposed method and the nonlinear programming method reveals that the trajectory generated by the proposed approach is smoother while meeting the same performance requirements.Specifically,the proposed method achieves a 34%reduction in maximum thrust,a 39.4%decrease in maximum thrust difference,and a 33%reduction in maximum airspeed difference.
基金supported by the Natural Science Foundation of Shanxi Province(202203021221155)the Foundation of National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal(J23-24-902)。
文摘With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Nickel-based catalysts are renowned for their outstanding activity and selectivity in this process.The impact of metal-support interaction(MSI),on Ni-based catalyst performance has been extensively researched and debated recently.This paper reviews the recent research progress of MSI on Ni-based catalysts and their characterization and modulation strategies in catalytic reactions.From the perspective of MSI,the effects of different carriers(metal oxides,carbon materials and molecular sieves,etc.)are introduced on the dispersion and surface structure of Ni active metal particles,and the effect of MSI on the activity and stability of DRM reactions on Ni-based catalysts is discussed in detail.Future research should focus on better understanding and controlling MSI to improve the performance and durability of nickel-based catalysts in CH_(4)-CO_(2)reforming,advancing cleaner energy technologies.
基金supported by National Natural Science Foundation of China(32201752)Xinjiang Tianchi Talents Program (TCYC2023TP02)Key Project of the Natural Science Foundation of Xinjiang Production and Construction Corps (2024DA001)
文摘Verticillium wilt,caused by the infamous pathogen Verticillium dahliae,presents a primary constraint on cotton cul-tivation worldwide.The complexity of disease resistance in cotton and the largely unexplored interaction dynamics between the cotton plant host and V.dahliae pathogen pose a crucial predicament for effectively managing cotton Verticillium wilt.Nevertheless,the most cost-effective approach to controlling this disease involves breeding and cul-tivating resistant cotton varieties,demanding a meticulous analysis of the mechanisms underlying cotton’s resistance to Verticillium wilt and the identification of pivotal genes.These aspects constitute focal points in disease-resistance breeding programs.In this review,we comprehensively discuss genetic inheritance associated with Verticillium wilt resistance in cotton,the advancements in molecular markers for disease resistance,the functional investiga-tion of resistance genes in cotton,the analysis of pathogenicity genes in V.dahliae,as well as the intricate interplay between cotton and this fungus.Moreover,we delve into the future prospects of cutting-edge research on cotton Verticillium wilt,aiming to proffer valuable insights for the effective management of this devastating fungus.
基金supported by the National Key R&D Program of China(2021YFA1501700)Fundamental Research Funds for the Central Universities(WK9990000142).
文摘The seminal report ofα-diimine palladium and nickel catalysts in 1995 represented a major breakthrough in the preparation of functionalized polyolefin materials.Owing to the high abundance and low cost of nickel,nickel-based catalysts have great application prospects in the industrialization process of olefin coordination polymerization.In this work,various N-aryl substituents with different electronic effects were synthesized and introduced intoα-diimine ligands.The aspreparedα-diimine nickel catalysts showed high polymerization activity(0.9×10^(7)–3.0×10^(7)g·mol^(−1)·h^(−1))in ethylene polymerization,generating polyethylene products with adjustable molecular weights(Mn values:7.4×10^(4)–146.9×10^(4)g·mol^(−1))and branching densities(31/1000 C–68/1000 C).The resulting polyethylene products showed excellent mechanical properties,with high tensile strength(up to 25.0 MPa)and high strain at break values(up to 3890%).The copolymerization of ethylene and polar monomers can also be achieved by these nicekel complexes,ultimately preparing functionalized polyolefins.
基金supported by the National Key Research and Development Program of China(2021YFB1600601)the Joint Funds of the National Natural Science Foundation of China and the Civil Aviation Administration of China(U1933106)+2 种基金the Scientific Research Project of Tianjin Educational Committee(2019KJ134)the Natural Science Foundation of TianjinIntelligent Civil Aviation Program(21JCQNJ C00900)。
文摘To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA)and cognitive reliability and error analysis method(CREAM)is proposed.STPACREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically.The common performance conditions(CPC)of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out.Taking the head-up display(HUD)system interaction process as an example,a case analysis is carried out,the layered safety control structure and formal model of the HUD interaction process are established.For the interactive behavior“Pilots approaching with HUD”,four unsafe control actions and35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed.The results show that HUD's HCI level gradually improves as the scores of CPC increase,and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI.Through case analysis,it is shown that STPACREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.
基金the“National Natural Science Foundation of China(No.22122202)”.
文摘Inducing the classic strong metal-support interaction(SMSI)is an effective approach to enhance the performance of supported metal catalysts by encapsulating the metal nanoparticles(NPs)with supports.Conventional thermal reduction method for inducing SMSI processes is often accompanied by undesirable structural evolution of metal NPs.In this study,a mild electrochemical method has been developed as a new approach to induce SMSI,using the cable structured core@shell CNT@SnO_(2) loaded Pt NPs as a proof of concept.The induced SnO_(x) encapsulation layer on the surface of Pt NPs can protect Pt NPs from the poisoned of CO impurity in hydrogen oxidation reaction(HOR),and the HOR current density could still maintain 85% for 2000 s with 10,000 ppm CO in H_(2),while the commercial Pt/C is completely inactivated.In addition,the electrons transfer from SnO_(x) to Pt NPs improved the HOR activity of the E-Pt-CNT@SnO_(2),achieving the excellent exchange current density of 1.55 A·mgPt^(-1).In situ Raman spectra and theoretical calculations show that the key to the electrochemical-method-induced SMSI is the formation of defects and the migration of SnO_(x) caused by the electrochemical redox operation,and the weakening the SneO bond strength by Pt NPs.
基金Supported by the Beijing Municipal Science&Technology Commission(Z211100004421012),the Key Reaserch and Development Pro⁃gram of China(2022YFF0605902)。
文摘In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.
基金supported by the Education and Teaching Research Project of Universities in Fujian Province(FBJY20230167).
文摘The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.
文摘In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-propeller is studied by analyzing the complex force situation during ship navigation and building a MATLAB/Simulink simulation platform based on multi-environmental resistance,propeller efficiency,main engine power,fuel consumption,fuel consumption rate and EEOI calculation module.Considering the environmental factors of wind,wave and ice,the route is divided into sections,the calculation of main engine power,main engine fuel consumption and EEOI for each section is completed,and the speed design is optimized based on the simulation model for each section.Under the requirements of the voyage plan,the optimization results show that the energy efficiency operation index of the whole route is reduced by 3.114%and the fuel consumption is reduced by 9.17 t.
基金Supported by the Science and Technology Project of Guangxi(Guike AD23023002)。
文摘In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradient method.Under the condition of standard Wolfe line search,the proposed search direction is the descent direction.For general nonlinear functions,the method is globally convergent.Finally,numerical results show that the proposed method is efficient.
文摘As an advanced 4^(th) generation synchrotron radiation facility,the Shenzhen Innovation Light-source Facility(SILF)storage ring is based on multi-bend achromat(MBA)lattices,enabling one to two orders of magnitude reduction in beam emittance compared to the 3^(rd) generation storage ring.This significantly enhance the radiation brightness and coherence.The multipole magnets of many types for SILF storage ring are under preliminary design,which require high integral field homogeneity.As a result,a dedicated pole tip optimization procedure with high efficiency is developed for quadrupole and sextupole magnets with Opera-2D^(■)python script.The procedure considers also the 3D field effect which makes the optimization more straightforward.In this paper,the design of the quadrupole and sextupole magnets for SILF storage ring is first presented,followed by a detailed description of the implemented pole shape optimization method.
基金supported by the National Natural Science Foundation of China(Grant No.12301603).
文摘In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and therefore,the foreign exchange rate model is incorporated.Under the allowing of selling and borrowing,the problem of maximizing the expected exponential utility of terminal wealth is studied.By solving the corresponding Hamilton-Jacobi-Bellman equations,the optimal investment strategies and value functions are obtained.Finally,numerical analysis is presented.
基金supported by the National Natural Science Foundation of China(62073267,61903305)the Fundamental Research Funds for the Central Universities(HXGJXM202214).
文摘The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flight test duration and cost are established to set up the framework of flight test process.The top-level arrangement for flight test is optimized by multi-objective algorithm to reduce the duration and cost of flight test.In order to verify the necessity and validity of the mathematical models and the optimization algorithm of top-level arrangement,real flight test data is used to make an example calculation.Results show that the multi-objective optimization results of the top-level flight arrangement are better than the initial arrangement data,which can shorten the duration,reduce the cost,and improve the efficiency of flight test.
基金Shanxi Province Higher Education Science and Technology Innovation Fund Project(2022-676)Shanxi Soft Science Program Research Fund Project(2016041008-6)。
文摘In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.
文摘[Objective]Under the combined impact of climate change and urbanization,urban rainstorm flood disasters occur frequently,seriously restricting urban safety and sustainable development.Relying on traditional grey infrastructure such as pipe networks for urban stormwater management is not enough to deal with urban rainstorm flood disasters under extreme rainfall events.The integration of green,grey and blue systems(GGB-integrated system)is gradually gaining recognition in the field of global flood prevention.It is necessary to further clarify the connotation,technical and engineering implementation strategies of the GGB-integrated system,to provide support for the resilient city construction.[Methods]Through literature retrieval and analysis,the relevant research and progress related to the layout optimization and joint scheduling optimization of the GGBintegrated system were systematically reviewed.In response to existing limitations and future engineering application requirements,key supporting technologies including the utilization of overground emergency storage spaces,safety protection of underground important infrastructure and multi-departmental collaboration,were proposed.A layout optimization framework and a joint scheduling framework for the GGB-integrated system were also developed.[Results]Current research on layout optimization predominantly focuses on the integration of green system and grey system,with relatively fewer studies incorporating blue system infrastructure into the optimization process.Moreover,these studies tend to be on a smaller scale with simpler scenarios,which do not fully capture the complexity of real-world systems.Additionally,optimization objective tend to prioritize environmental and economic goals,while social and ecological factors are less frequently considered.Current research on joint scheduling optimization is often limited to small-scale plots,with insufficient attention paid to the entire system.There is a deficiency in method for real-time,automated determination of optimal control strategies for combinations of multiple system facilities based on actual rainfall-runoff processes.Additionally,the application of emergency facilities during extreme conditions is not sufficiently addressed.Furthermore,both layout optimization and joint scheduling optimization lack consideration of the mute feed effect of flood and waterlogging in urban,watershed and regional scales.[Conclusion]Future research needs to improve the theoretical framework for layout optimization and joint scheduling optimization of GGB-integrated system.Through the comprehensive application of the Internet of things,artificial intelligence,coupling model development,multi-scale analysis,multi-scenario simulation,and the establishment of multi-departmental collaboration mechanisms,it can enhance the flood resilience of urban areas in response to rainfall events of varying intensities,particularly extreme rainfall events.
基金supported by the Istanbul Technical University Office of Scientific Research Projects(ITUBAPSIS),under grant MYL-2022-43776。
文摘The design of unmanned aerial vehicles(UAVs)revolves around the careful selection of materials that are both lightweight and robust.Carbon fiber-reinforced polymer(CFRP)emerged as an ideal option for wing construction,with its mechanical qualities thoroughly investigated.In this study,we developed and optimized a conceptual UAV wing to withstand structural loads by establishing progressive composite stacking sequences,and we conducted a series of experimental characterizations on the resulting material.In the optimization phase,the objective was defined as weight reduction,while the Hashin damage criterion was established as the constraint for the optimization process.The optimization algorithm adaptively monitors regional damage criterion values,implementing necessary adjustments to facilitate the mitigation process in a cost-effective manner.Optimization of the analytical model using Simulia Abaqus~(TM)and a Python-based user-defined sub-routine resulted in a 34.7%reduction in the wing's structural weight after 45 iterative rounds.Then,the custom-developed optimization algorithm was compared with a genetic algorithm optimization.This comparison has demonstrated that,although the genetic algorithm explores numerous possibilities through hybridization,the custom-developed algorithm is more result-oriented and achieves optimization in a reduced number of steps.To validate the structural analysis,test specimens were fabricated from the wing's most critically loaded segment,utilizing the identical stacking sequence employed in the optimization studies.Rigorous mechanical testing revealed unexpectedly high compressive strength,while tensile and bending strengths fell within expected ranges.All observed failure loads remained within the established safety margins,thereby confirming the reliability of the analytical predictions.
基金supported by the National Key Research and Development Program(2021YFB3502500).
文摘An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and samples from the model to obtain the next generation,avoiding the problem of building-blocks destruction caused by crossover and mutation.Neighboring search from artificial bee colony algorithm(ABCA)is introduced to enhance the local optimization ability and improved to raise the speed of convergence.The probability model is modified by boundary correction and loss correction to enhance the robustness of the algorithm.The proposed IEDA is compared with other intelligent algorithms in relevant references.The results show that the proposed IEDA has faster convergence speed and stronger optimization ability,proving the feasibility and effectiveness of the algorithm.
基金Projects(51775445,52175435)supported by the National Natural Science Foundation of ChinaProject(CX2023051)supported by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China。
文摘On-machine measurement(OMM)stands out as a pivotal technology in complex curved surface adaptive machining.However,the complex structure inherent in workpieces poses a significant challenge as the stylus orientation frequently shifts during the measurement process.Consequently,a substantial amount of time is allocated to calibrating pre-travel error and probe movement.Furthermore,the frequent movement of machine tools also increases the influence of machine errors.To enhance both accuracy and efficiency,an optimization strategy for the OMM process is proposed.Based on the kinematic chain of the machine tools,the relationship between the angle combination of rotary axes,the stylus orientation,and the calibration position of pre-travel error is disclosed.Additionally,an OMM efficiency optimization model for complex curved surfaces is developed.This model is solved to produce the optimal efficiency angle combinations for each to-be-measured point.Within each angle combination,the effects of positioning errors on measurement results are addressed by coordinate system offset and measurement result compensation method.Finally,the experiments on an impeller are used to demonstrate the practical utility of the proposed method.