Multi-carrier faster-than-Nyquist(MFTN)can improve the spectrum efficiency(SE).In this paper,we first analyze the benefit of time frequency packing MFTN(TFP-MFTN).Then,we propose an efficient digital implementation fo...Multi-carrier faster-than-Nyquist(MFTN)can improve the spectrum efficiency(SE).In this paper,we first analyze the benefit of time frequency packing MFTN(TFP-MFTN).Then,we propose an efficient digital implementation for TFP-MFTN based on filter bank multicarrier modulation.The time frequency packing ratio pair in our proposed implementation scheme is optimized with the SE criterion.Next,the joint optimization for the coded modulation MFTN based on extrinsic information transfer(EXIT)chart is performed.The Monte-Carlo simulations are carried out to verify performance gain of the joint inner and outer code optimization.Simulation results demonstrate that the TFPMFTN has a 0.8 dB and 0.9 dB gain comparing to time packing MFTN(TP-MFTN)and higher order Nyquist at same SE,respectively;the TFP-MFTN with optimized low density parity check(LDPC)code has a 2.9 dB gain comparing to that with digital video broadcasting(DVB)LDPC.Compared with previous work on TFP-MFTN(SE=1.55 bit/s/Hz),the SE of our work is improved by 29%and our work has a 4.1 dB gain at BER=1×10^(-5).展开更多
针对多目标狼群算法存在的搜索不充分、收敛性不足和多样性欠缺的问题,以及缺少对约束进行处理的问题,提出环境选择的双种群约束多目标狼群算法(multi-objective wolf pack algorithm for dual population constraints with environment...针对多目标狼群算法存在的搜索不充分、收敛性不足和多样性欠缺的问题,以及缺少对约束进行处理的问题,提出环境选择的双种群约束多目标狼群算法(multi-objective wolf pack algorithm for dual population constraints with environment selection,DCMOWPA-ES)。引入双种群约束处理方法给种群设置不同的搜索偏好,主种群运用可行性准则优先保留可行解,次种群通过ε约束探索不可行区域并将搜索结果传递给主种群,让算法能较好应对复杂的不可行区域,保障算法的可行性;提出维度选择的随机游走策略,使人工狼可自主选择游走方向,提高种群的全局搜索能力;设计精英学习的步长调整机制,人工狼通过向头狼学习的方式提升种群的局部搜索能力,确保算法的收敛性;采用环境选择的狼群更新策略,根据人工狼被支配的情况和所处位置的密度信息对其赋值,选择被支配数少且密度信息小的人工狼作为优秀个体,改善算法的多样性。为验证算法性能,将DCMOWPA-ES与六种新兴约束多目标优化算法在两组约束多目标测试集和汽车侧面碰撞设计问题上进行对比实验。实验结果表明,DCMOWPA-ES算法具备较好的可行性、收敛性和多样性。展开更多
基金supported by the National Natural Science Foundation of China(61961014,61561017)。
文摘Multi-carrier faster-than-Nyquist(MFTN)can improve the spectrum efficiency(SE).In this paper,we first analyze the benefit of time frequency packing MFTN(TFP-MFTN).Then,we propose an efficient digital implementation for TFP-MFTN based on filter bank multicarrier modulation.The time frequency packing ratio pair in our proposed implementation scheme is optimized with the SE criterion.Next,the joint optimization for the coded modulation MFTN based on extrinsic information transfer(EXIT)chart is performed.The Monte-Carlo simulations are carried out to verify performance gain of the joint inner and outer code optimization.Simulation results demonstrate that the TFPMFTN has a 0.8 dB and 0.9 dB gain comparing to time packing MFTN(TP-MFTN)and higher order Nyquist at same SE,respectively;the TFP-MFTN with optimized low density parity check(LDPC)code has a 2.9 dB gain comparing to that with digital video broadcasting(DVB)LDPC.Compared with previous work on TFP-MFTN(SE=1.55 bit/s/Hz),the SE of our work is improved by 29%and our work has a 4.1 dB gain at BER=1×10^(-5).
文摘针对多目标狼群算法存在的搜索不充分、收敛性不足和多样性欠缺的问题,以及缺少对约束进行处理的问题,提出环境选择的双种群约束多目标狼群算法(multi-objective wolf pack algorithm for dual population constraints with environment selection,DCMOWPA-ES)。引入双种群约束处理方法给种群设置不同的搜索偏好,主种群运用可行性准则优先保留可行解,次种群通过ε约束探索不可行区域并将搜索结果传递给主种群,让算法能较好应对复杂的不可行区域,保障算法的可行性;提出维度选择的随机游走策略,使人工狼可自主选择游走方向,提高种群的全局搜索能力;设计精英学习的步长调整机制,人工狼通过向头狼学习的方式提升种群的局部搜索能力,确保算法的收敛性;采用环境选择的狼群更新策略,根据人工狼被支配的情况和所处位置的密度信息对其赋值,选择被支配数少且密度信息小的人工狼作为优秀个体,改善算法的多样性。为验证算法性能,将DCMOWPA-ES与六种新兴约束多目标优化算法在两组约束多目标测试集和汽车侧面碰撞设计问题上进行对比实验。实验结果表明,DCMOWPA-ES算法具备较好的可行性、收敛性和多样性。