To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from ...To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from the top-level perspective of multi-service joint warfare.First,an overall planning and analysis method of architecture modeling is proposed with the idea of a bionic analogy for battlefield target intelligence system architecture modeling,which reduces the difficulty of the planning and design process.The method introduces the Department of Defense architecture framework(DoDAF)modeling method,the multi-living agent(MLA)theory modeling method,and other combinations for planning and modeling.A set of rapid planning methods that can be applied to model the architecture of various types of complex systems is formed.Further,the liveness analysis of the battlefield target intelligence system is carried out,and the problems of the existing system are presented from several aspects.And the technical prediction of the development and construction is given,which provides directional ideas for the subsequent research and development of the battlefield target intelligence system.In the end,the proposed architecture model of the battlefield target intelligence system is simulated and verified by applying the colored Petri nets(CPN)simulation software.The analysis demonstrates the reasonable integrity of its logic.展开更多
The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuse...The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.展开更多
[目的/意义]为解决当前作物管理中个性化需求难以捕捉、决策过程缺乏灵活性难题,本研究提出了一种基于大语言模型的个性化作物生产智能决策方法[方法]通过自然语言对话收集用户在蔬菜作物管理过程中的个性化需求,涵盖产量、人力资源消...[目的/意义]为解决当前作物管理中个性化需求难以捕捉、决策过程缺乏灵活性难题,本研究提出了一种基于大语言模型的个性化作物生产智能决策方法[方法]通过自然语言对话收集用户在蔬菜作物管理过程中的个性化需求,涵盖产量、人力资源消耗和水肥消耗等方面。随后,将作物管理过程建模为多目标优化问题,同时考虑用户个性化偏好和作物产量,并采用强化学习算法来学习作物管理策略。水肥管理策略的训练通过与环境的交互持续更新,学习在不同条件下采取何种行动以实现最优决策,从而实现个性化的作物管理。[结果和讨论]在gym-DSSAT(Gym-Decision Support System for Agrotechnology Transfer)仿真平台上进行的实验,结果表明,所提出的个性化作物生产智能决策方法能够有效地根据用户的个性化偏好调整作物管理策略。[结论]通过精准捕捉用户的个性化需求,该方法在保证作物产量的同时,优化了人力资源与水肥资源的消耗。展开更多
基金supported by the National Natural Science Foundation of China(41927801).
文摘To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from the top-level perspective of multi-service joint warfare.First,an overall planning and analysis method of architecture modeling is proposed with the idea of a bionic analogy for battlefield target intelligence system architecture modeling,which reduces the difficulty of the planning and design process.The method introduces the Department of Defense architecture framework(DoDAF)modeling method,the multi-living agent(MLA)theory modeling method,and other combinations for planning and modeling.A set of rapid planning methods that can be applied to model the architecture of various types of complex systems is formed.Further,the liveness analysis of the battlefield target intelligence system is carried out,and the problems of the existing system are presented from several aspects.And the technical prediction of the development and construction is given,which provides directional ideas for the subsequent research and development of the battlefield target intelligence system.In the end,the proposed architecture model of the battlefield target intelligence system is simulated and verified by applying the colored Petri nets(CPN)simulation software.The analysis demonstrates the reasonable integrity of its logic.
基金supported by the National Natural Science Foundation of China(51175502)
文摘The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.
文摘[目的/意义]为解决当前作物管理中个性化需求难以捕捉、决策过程缺乏灵活性难题,本研究提出了一种基于大语言模型的个性化作物生产智能决策方法[方法]通过自然语言对话收集用户在蔬菜作物管理过程中的个性化需求,涵盖产量、人力资源消耗和水肥消耗等方面。随后,将作物管理过程建模为多目标优化问题,同时考虑用户个性化偏好和作物产量,并采用强化学习算法来学习作物管理策略。水肥管理策略的训练通过与环境的交互持续更新,学习在不同条件下采取何种行动以实现最优决策,从而实现个性化的作物管理。[结果和讨论]在gym-DSSAT(Gym-Decision Support System for Agrotechnology Transfer)仿真平台上进行的实验,结果表明,所提出的个性化作物生产智能决策方法能够有效地根据用户的个性化偏好调整作物管理策略。[结论]通过精准捕捉用户的个性化需求,该方法在保证作物产量的同时,优化了人力资源与水肥资源的消耗。