This paper presents a new type of double-helical rotor wave energy converter(WEC),which consists of two isolated sets of helical rotor structures(inner and outer).This device can generate electricity by using the risi...This paper presents a new type of double-helical rotor wave energy converter(WEC),which consists of two isolated sets of helical rotor structures(inner and outer).This device can generate electricity by using the rising and falling energy of a wave.The rotors are simulated and optimized by Fluent.Each rotor’s blades are simulated and analyzed,which are separately changed in terms of helix angle,shape,and thickness.The simulation result shows that,for both inner and outer helical rotors,the energy harvesting efficiency is the highest when the blade helix angle is 45°.Triangular blades have better hydrodynamic performance than square and circular blades.The energy harvesting efficiency of 15 mm thick blades is higher than that of 75 mm thick blades.展开更多
The damping material optimal placement for the structure with damping layer is studied based on evolutionary structural optimization (ESO) to maximize modal loss factors. A mathematical model is constructed with the o...The damping material optimal placement for the structure with damping layer is studied based on evolutionary structural optimization (ESO) to maximize modal loss factors. A mathematical model is constructed with the objective function defined as the maximum of modal loss factors of the structure and design constraints function defined as volume fraction of damping material. The optimal placement is found. Several examples are presented for verification. The results demonstrate that the method based on ESO is effective in solving the topology optimization of the structure with unconstrained damping layer and constrained damping layer. This optimization method suits for free and constrained damping structures.展开更多
基金Supported by the National Key Research and Development Program of China(2019YFB1504402).
文摘This paper presents a new type of double-helical rotor wave energy converter(WEC),which consists of two isolated sets of helical rotor structures(inner and outer).This device can generate electricity by using the rising and falling energy of a wave.The rotors are simulated and optimized by Fluent.Each rotor’s blades are simulated and analyzed,which are separately changed in terms of helix angle,shape,and thickness.The simulation result shows that,for both inner and outer helical rotors,the energy harvesting efficiency is the highest when the blade helix angle is 45°.Triangular blades have better hydrodynamic performance than square and circular blades.The energy harvesting efficiency of 15 mm thick blades is higher than that of 75 mm thick blades.
基金Science and Technology Foundation of China Academy of Engineering Physics (20060321)
文摘The damping material optimal placement for the structure with damping layer is studied based on evolutionary structural optimization (ESO) to maximize modal loss factors. A mathematical model is constructed with the objective function defined as the maximum of modal loss factors of the structure and design constraints function defined as volume fraction of damping material. The optimal placement is found. Several examples are presented for verification. The results demonstrate that the method based on ESO is effective in solving the topology optimization of the structure with unconstrained damping layer and constrained damping layer. This optimization method suits for free and constrained damping structures.