The optimal imaging time selection of ship targets for shore-based inverse synthetic aperture radar (ISAR) in high sea conditions is investigated. The optimal imaging time includes opti- mal imaging instants and opt...The optimal imaging time selection of ship targets for shore-based inverse synthetic aperture radar (ISAR) in high sea conditions is investigated. The optimal imaging time includes opti- mal imaging instants and optimal imaging duration. A novel method for optimal imaging instants selection based on the estimation of the Doppler centroid frequencies (DCFs) of a series of images obtained over continuous short durations is proposed. Combined with the optimal imaging duration selection scheme using the image contrast maximization criteria, this method can provide the ship images with the highest focus. Simulated and real data pro- cessing results verify the effectiveness of the proposed imaging method.展开更多
Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems,...Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems, including spectral, polarization, and infrared technologies, there is still a lack of effective real-time method for accurately detecting small-size and high-efficient camouflaged people in complex real-world scenes. Here, this study proposes a snapshot multispectral image-based camouflaged detection model, multispectral YOLO(MS-YOLO), which utilizes the SPD-Conv and Sim AM modules to effectively represent targets and suppress background interference by exploiting the spatial-spectral target information. Besides, the study constructs the first real-shot multispectral camouflaged people dataset(MSCPD), which encompasses diverse scenes, target scales, and attitudes. To minimize information redundancy, MS-YOLO selects an optimal subset of 12 bands with strong feature representation and minimal inter-band correlation as input. Through experiments on the MSCPD, MS-YOLO achieves a mean Average Precision of 94.31% and real-time detection at 65 frames per second, which confirms the effectiveness and efficiency of our method in detecting camouflaged people in various typical desert and forest scenes. Our approach offers valuable support to improve the perception capabilities of unmanned aerial vehicles in detecting enemy forces and rescuing personnel in battlefield.展开更多
Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services sele...Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services selection)to resolve dynamic Web services selection with QoS global optimal path,was proposed.The essence of the algorithm was that the problem of dynamic Web services selection with QoS global optimal path was transformed into a multi-objective services composition optimization problem with QoS constraints.The operations of the cross and mutation in genetic algorithm were brought into PSOA(particle swarm optimization algorithm),forming an improved algorithm(IPSOA)to solve the QoS global optimal problem.Theoretical analysis and experimental results indicate that the algorithm can better satisfy the time convergence requirement for Web services composition supporting cross-enterprises collaboration than the traditional algorithms.展开更多
The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuse...The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.展开更多
Based on the characteristics of guaranteed handover (GH) algorithm, the finite capacity in one system makes the blocking probability (PB) of GH algorithm increase rapidly in the case of high traffic losd. So, when...Based on the characteristics of guaranteed handover (GH) algorithm, the finite capacity in one system makes the blocking probability (PB) of GH algorithm increase rapidly in the case of high traffic losd. So, when large amounts of multimedia services are transmitted via a single low earth orbit (LEO) satellite system, the PB of it is much higher. In order to solve the problem, a novel handover scheme defined by multi-tier optimal layer selection is proposed. The scheme sufficiently takes into account the characteristics of double-tier satellite network, which is constituted by LEO satellites combined with medium earth orbit (MEO) satellites, and the multimedia transmitted by such network, so it can augment this systematic capacity and effectively reduces the traffic loed in the LEO which performs GH algorithm. The detailed processes are also presented. The simulation and numerical results show that the approach integrated with GH algorithm achieves a significant improvement in the PB and practicality, as compared to the single LEO layer network.展开更多
A spectral match optimization based on grey incidence matrix was put forward to evaluate camouflage painting design.A synthetic degree of incidence (SDI) was defined to comprehensively reflect the spectrum similarity ...A spectral match optimization based on grey incidence matrix was put forward to evaluate camouflage painting design.A synthetic degree of incidence (SDI) was defined to comprehensively reflect the spectrum similarity based on theory of grey incidence analysis.A grey optimization model for camouflage painting sheme was constructed on the basis of SDI and grey incidence matrix.Its weight values were determined according to area percentages of all components in the camouflage scene,and a quantitative ordering for various schemes could be obtained according to the evaluation coefficients.Experiment results show that the method mentioned in this paper can provide a quantitative basis for the camouflage decision-making,and it can also be used in other camouflage scheme selection.展开更多
基金supported by the Innovation Foundation for Scientific Research Base(NJ20140008NJ20150018)+1 种基金the Aeronautical Science Foundation of China(20132052035)the National Defense Basic Scientific Research(B2520110008)
文摘The optimal imaging time selection of ship targets for shore-based inverse synthetic aperture radar (ISAR) in high sea conditions is investigated. The optimal imaging time includes opti- mal imaging instants and optimal imaging duration. A novel method for optimal imaging instants selection based on the estimation of the Doppler centroid frequencies (DCFs) of a series of images obtained over continuous short durations is proposed. Combined with the optimal imaging duration selection scheme using the image contrast maximization criteria, this method can provide the ship images with the highest focus. Simulated and real data pro- cessing results verify the effectiveness of the proposed imaging method.
基金support by the National Natural Science Foundation of China (Grant No. 62005049)Natural Science Foundation of Fujian Province (Grant Nos. 2020J01451, 2022J05113)Education and Scientific Research Program for Young and Middleaged Teachers in Fujian Province (Grant No. JAT210035)。
文摘Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems, including spectral, polarization, and infrared technologies, there is still a lack of effective real-time method for accurately detecting small-size and high-efficient camouflaged people in complex real-world scenes. Here, this study proposes a snapshot multispectral image-based camouflaged detection model, multispectral YOLO(MS-YOLO), which utilizes the SPD-Conv and Sim AM modules to effectively represent targets and suppress background interference by exploiting the spatial-spectral target information. Besides, the study constructs the first real-shot multispectral camouflaged people dataset(MSCPD), which encompasses diverse scenes, target scales, and attitudes. To minimize information redundancy, MS-YOLO selects an optimal subset of 12 bands with strong feature representation and minimal inter-band correlation as input. Through experiments on the MSCPD, MS-YOLO achieves a mean Average Precision of 94.31% and real-time detection at 65 frames per second, which confirms the effectiveness and efficiency of our method in detecting camouflaged people in various typical desert and forest scenes. Our approach offers valuable support to improve the perception capabilities of unmanned aerial vehicles in detecting enemy forces and rescuing personnel in battlefield.
基金Project(70631004)supported by the Key Project of the National Natural Science Foundation of ChinaProject(20080440988)supported by the Postdoctoral Science Foundation of China+1 种基金Project(09JJ4030)supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Postdoctoral Science Foundation of Central South University,China
文摘Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services selection)to resolve dynamic Web services selection with QoS global optimal path,was proposed.The essence of the algorithm was that the problem of dynamic Web services selection with QoS global optimal path was transformed into a multi-objective services composition optimization problem with QoS constraints.The operations of the cross and mutation in genetic algorithm were brought into PSOA(particle swarm optimization algorithm),forming an improved algorithm(IPSOA)to solve the QoS global optimal problem.Theoretical analysis and experimental results indicate that the algorithm can better satisfy the time convergence requirement for Web services composition supporting cross-enterprises collaboration than the traditional algorithms.
基金supported by the National Natural Science Foundation of China(51175502)
文摘The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.
文摘Based on the characteristics of guaranteed handover (GH) algorithm, the finite capacity in one system makes the blocking probability (PB) of GH algorithm increase rapidly in the case of high traffic losd. So, when large amounts of multimedia services are transmitted via a single low earth orbit (LEO) satellite system, the PB of it is much higher. In order to solve the problem, a novel handover scheme defined by multi-tier optimal layer selection is proposed. The scheme sufficiently takes into account the characteristics of double-tier satellite network, which is constituted by LEO satellites combined with medium earth orbit (MEO) satellites, and the multimedia transmitted by such network, so it can augment this systematic capacity and effectively reduces the traffic loed in the LEO which performs GH algorithm. The detailed processes are also presented. The simulation and numerical results show that the approach integrated with GH algorithm achieves a significant improvement in the PB and practicality, as compared to the single LEO layer network.
文摘A spectral match optimization based on grey incidence matrix was put forward to evaluate camouflage painting design.A synthetic degree of incidence (SDI) was defined to comprehensively reflect the spectrum similarity based on theory of grey incidence analysis.A grey optimization model for camouflage painting sheme was constructed on the basis of SDI and grey incidence matrix.Its weight values were determined according to area percentages of all components in the camouflage scene,and a quantitative ordering for various schemes could be obtained according to the evaluation coefficients.Experiment results show that the method mentioned in this paper can provide a quantitative basis for the camouflage decision-making,and it can also be used in other camouflage scheme selection.