期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
High Energy Efficiency Dynamic Connected Hybrid Precoding for mm Wave Massive MIMO Systems
1
作者 Du Ruiyan Liu Huajing +1 位作者 Li Tiangui Liu Fulai 《China Communications》 SCIE CSCD 2024年第5期36-44,共9页
This paper considers a high energy efficiency dynamic connected(HEDC)structure,which promotes the practicability and reduces the power consumption of hybrid precoding system by lowresolution phase shifters(PSs).Based ... This paper considers a high energy efficiency dynamic connected(HEDC)structure,which promotes the practicability and reduces the power consumption of hybrid precoding system by lowresolution phase shifters(PSs).Based on the proposed structure,a new hybrid precoding algorithm is presented to optimize the energy efficiency,namely,HP-HEDC algorithm.Firstly,via a new defined effective optimal precoding matrix,the problem of optimizing the analog switch precoding matrix is formulated as a sparse representation problem.Thus,the optimal analog switch precoding matrix can be readily obtained by the branch-and-bound method.Then,the digital precoding matrix optimization problem is modeled as a dictionary update problem and solved by the method of optimal direction(MOD).Finally,the diagonal entries of the analog PS precoding matrix are optimized by exhaustive search independently since PS and antenna is one-to-one.Simulation results show that the HEDC structure enjoys low power consumption and satisfactory spectral efficiency.The proposed algorithm presents at least 50%energy efficiency improvement compared with other algorithms when the PS resolution is set as 3-bit. 展开更多
关键词 energy efficiency hybrid precoding mmWave optimized resolution phase shifter
在线阅读 下载PDF
Vanadium oxide nanospheres encapsulated in N-doped carbon nanofibers with morphology and defect dual-engineering toward advanced aqueous zinc-ion batteries
2
作者 Yunfei Song Laiying Jing +3 位作者 Rutian Wang Jiaxi Cui Mei Li Yunqiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期599-609,I0013,共12页
Vanadium-based electrodes are regarded as attractive cathode materials in aqueous zinc ion batteries(ZIBs)caused by their high capacity and unique layered structure.However,it is extremely challenging to acquire high ... Vanadium-based electrodes are regarded as attractive cathode materials in aqueous zinc ion batteries(ZIBs)caused by their high capacity and unique layered structure.However,it is extremely challenging to acquire high electrochemical performance owing to the limited electronic conductivity,sluggish ion kinetics,and severe volume expansion during the insertion/extraction process of Zn^(2+).Herein,a series of V_(2)O_(3)nanospheres embedded N-doped carbon nanofiber structures with various V_(2)O_(3)spherical morphologies(solid,core-shell,hollow)have been designed for the first time by an electrospinning technique followed thermal treatments.The N-doped carbon nanofibers not only improve the electrical conductivity and the structural stability,but also provides encapsulating shells to prevent the vanadium dissolution and aggregation of V_(2)O_(3)particles.Furthermore,the varied morphological structures of V_(2)O_(3)with abundant oxygen vacancies can alleviate the volume change and increase the Zn^(2+)pathway.Besides,the phase transition between V_(2)O_(3)and Zn_XV_(2)O_(5-m)·n H_(2)O in the cycling was also certified.As a result,the as-obtained composite delivers excellent long-term cycle stability and enhanced rate performance for coin cells,which is also confirmed through density functional theory(DFT)calculations.Even assembled into flexible ZIBs,the sample still exhibits superior electrochemical performance,which may afford new design concept for flexible cathode materials of ZIBs. 展开更多
关键词 Aqueous zinc ion batteries Vanadium trioxide Oxygen vacancy Structure evolution phase optimization
在线阅读 下载PDF
Transmit Power Minimization for IRS-Assisted NOMA-UAV Networks
3
作者 Zhao Chen Pang Xiaowei +4 位作者 Tang Jie Liu Mingqian Zhao Nan Zhang Xiuyin Wang Xianbin 《China Communications》 SCIE CSCD 2024年第5期137-152,共16页
The flexibility of unmanned aerial vehicles(UAVs)allows them to be quickly deployed to support ground users.Intelligent reflecting surface(IRS)can reflect the incident signal and form passive beamforming to enhance th... The flexibility of unmanned aerial vehicles(UAVs)allows them to be quickly deployed to support ground users.Intelligent reflecting surface(IRS)can reflect the incident signal and form passive beamforming to enhance the signal in the specific direction.Motivated by the promising benefits of both technologies,we consider a new scenario in this paper where a UAV uses non-orthogonal multiple access to serve multiple users with IRS.According to their distance to the UAV,the users are divided into the close users and remote users.The UAV hovers above the close users due to their higher rate requirement,while the IRS is deployed near the remote users to enhance their received power.We aim at minimizing the transmit power of UAV by jointly optimizing the beamforming of UAV and the phase shift of IRS while ensuring the decoding requirement.However,the problem is non-convex.Therefore,we decompose it into two sub-problems,including the transmit beamforming optimization and phase shift optimization,which are transformed into second-order cone programming and semidefinite programming,respectively.We propose an iterative algorithm to solve the two sub-problems alternatively.Simulation results prove the effectiveness of the proposed scheme in minimizing the transmit power of UAV. 展开更多
关键词 intelligent reflecting surface nonorthogonal multiple access phase shift optimization transmit beamforming optimization unmanned aerial vehicle
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部