The complex systems are often in the structure of multi-operating modes, and the components implementing system functions are different under different operation modes, which results in the problems that components of...The complex systems are often in the structure of multi-operating modes, and the components implementing system functions are different under different operation modes, which results in the problems that components often fail in different operating modes, faults can be only detected in specified operating modes, tests can be available in specified operating modes,and the cost and efficiency of detecting and isolating faults are different under different operating modes and isolation levels. Aiming at these problems, an optimal test selection method for fault detection and isolation in the multi-operating mode system is proposed by using the fault pair coding and rollout algorithm. Firstly,the faults in fault-test correlation matrices under different operating modes are combined to fault-pairs, which is used to construct the fault pair-test correlation matrices under different operating modes.Secondly, the final fault pair-test correlation matrix of the multioperating mode system is obtained by operating the fault pair-test correlation matrices under different operating modes. Based on the final fault pair-test correlation matrix, the necessary tests are selected by the rollout algorithm orderly. Finally, the effectiveness of the proposed method is verified by examples of the optimal test selection in the multi-operating mode system with faults isolated to different levels. The result shows that the proposed method can effectively mine the fault detection and isolation ability of tests and it is suitable for the optimal test selection of the multi-operating mode system with faults isolated to the replacement unit and specific fault.展开更多
传统的码索引调制(code index modulation,CIM)系统仅通过扩频码和星座符号来承载信息,能量效率和频谱效率都较低,而附加相位作为一种独特的调制符号来承载信息,具有低传输功耗的特点。为了充分利用多天线索引来提高频谱效率,提出了基...传统的码索引调制(code index modulation,CIM)系统仅通过扩频码和星座符号来承载信息,能量效率和频谱效率都较低,而附加相位作为一种独特的调制符号来承载信息,具有低传输功耗的特点。为了充分利用多天线索引来提高频谱效率,提出了基于低功耗设计的高速率广义空间码索引调制(high-rate generalized space code index modulation,HR-GS-CIM)系统。HR-GS-CIM系统通过使用附加相位替代传统的调制符号,并且通过遗传算法(genetic algorithm,GA)来优化设计附加相位,展现了极高的能效优势和性能优势。同时,HR-GS-CIM系统通过引入广义和空间索引的方法,将附加相位、扩频码以及天线索引进行联合映射选择,并采用低复杂度的联合映射选择算法,极大地提高了系统频谱效率。此外,分析了HR-GS-CIM系统的理论性能,并且仿真验证了HR-GS-CIM系统的理论和仿真性能一致。最后,与传统的CIM系统等对比,验证了所提HR-GS-CIM系统具有显著的性能增益。展开更多
基金supported by the Natural Science Foundation of Shannxi Province(2017JQ5016)the Joint Laboratory for Sea Measurement and Control of Aircraft(DOM2016OF011)
文摘The complex systems are often in the structure of multi-operating modes, and the components implementing system functions are different under different operation modes, which results in the problems that components often fail in different operating modes, faults can be only detected in specified operating modes, tests can be available in specified operating modes,and the cost and efficiency of detecting and isolating faults are different under different operating modes and isolation levels. Aiming at these problems, an optimal test selection method for fault detection and isolation in the multi-operating mode system is proposed by using the fault pair coding and rollout algorithm. Firstly,the faults in fault-test correlation matrices under different operating modes are combined to fault-pairs, which is used to construct the fault pair-test correlation matrices under different operating modes.Secondly, the final fault pair-test correlation matrix of the multioperating mode system is obtained by operating the fault pair-test correlation matrices under different operating modes. Based on the final fault pair-test correlation matrix, the necessary tests are selected by the rollout algorithm orderly. Finally, the effectiveness of the proposed method is verified by examples of the optimal test selection in the multi-operating mode system with faults isolated to different levels. The result shows that the proposed method can effectively mine the fault detection and isolation ability of tests and it is suitable for the optimal test selection of the multi-operating mode system with faults isolated to the replacement unit and specific fault.
文摘传统的码索引调制(code index modulation,CIM)系统仅通过扩频码和星座符号来承载信息,能量效率和频谱效率都较低,而附加相位作为一种独特的调制符号来承载信息,具有低传输功耗的特点。为了充分利用多天线索引来提高频谱效率,提出了基于低功耗设计的高速率广义空间码索引调制(high-rate generalized space code index modulation,HR-GS-CIM)系统。HR-GS-CIM系统通过使用附加相位替代传统的调制符号,并且通过遗传算法(genetic algorithm,GA)来优化设计附加相位,展现了极高的能效优势和性能优势。同时,HR-GS-CIM系统通过引入广义和空间索引的方法,将附加相位、扩频码以及天线索引进行联合映射选择,并采用低复杂度的联合映射选择算法,极大地提高了系统频谱效率。此外,分析了HR-GS-CIM系统的理论性能,并且仿真验证了HR-GS-CIM系统的理论和仿真性能一致。最后,与传统的CIM系统等对比,验证了所提HR-GS-CIM系统具有显著的性能增益。