NOx and soot emissions from diesel engines can be greatly reduced by pressure wave supercharging(PWS).The diesel engine matched with PWS needs redesigning its exhaust pipes.Except for meeting the installation requirem...NOx and soot emissions from diesel engines can be greatly reduced by pressure wave supercharging(PWS).The diesel engine matched with PWS needs redesigning its exhaust pipes.Except for meeting the installation requirements,the exhaust gas must be stable in pressure before rushing into PWS.In this paper the lateral and center ported divergent exhaust pipes are designed,modeled geometrically and analyzed structurally based on a 3-D design software-CATIA to determine the structure of two exhaust pipes having the required inner volume.Then flow analysis for two exhaust pipes is done using a flow analysis software-ANASYS.Moreover,the optimal exhaust pipes are determined comprehensively and cast for engine test.Engine test results show that PWS is superior to turbocharging at low engine speeds and inferior to turbocharging in power and emissions at medium-to-high engine speeds.The performance of PWS engine under high speed operating conditions can be improved by contriving larger surge volume intake and exhaust pipes.展开更多
Diesel engines meeting the latest emission regulations must be equipped with exhaust gas aftertreatment system,including diesel oxidation catalysts(DOC),diesel particulate filters(DPF),and selective catalytic reductio...Diesel engines meeting the latest emission regulations must be equipped with exhaust gas aftertreatment system,including diesel oxidation catalysts(DOC),diesel particulate filters(DPF),and selective catalytic reduction(SCR).However,before the final integration of the aftertreatment system(DOC+DPF+SCR)and the diesel engine,a reasonable structural optimization of the catalytic converters and a large number of bench calibration tests must be completed,involving large costs and long development cycles.The design and optimization of the exhaust gas aftertreatment system for a heavy-duty diesel engine was proposed in this paper.Firstly,one-dimensional(1D)and threedimensional(3D)computational models of the exhaust gas aftertreatment system accounting for the structural parameters of the catalytic converters were established.Then based on the calibrated models,the effects of the converter’s structural parameters on their main performance indicators,including the conversion of various exhaust pollutants and the temperatures and pressure drops of the converters,were studied.Finally,the optimal design scheme was obtained.The temperature distribution of the solid substrates and pressure distributions of the catalytic converters were studied based on the 3D model.The method proposed in this paper has guiding significance for the optimization of diesel engine aftertreatment systems.展开更多
Combining real accelerating genetic algorithm(RAGA) with the optimization design of multi-hole and varied diameter pipe, the authors solved the problem of optimizing multi-dimensional parameters at the same time. In w...Combining real accelerating genetic algorithm(RAGA) with the optimization design of multi-hole and varied diameter pipe, the authors solved the problem of optimizing multi-dimensional parameters at the same time. In which the advanced convergence and easily to run into partial optimization were avoid. Applied the RAGA to solving the problem in the optimization design of fixed piping sprinkler irrigation system. The optimized parameters, such as diameters and the length of pipe were calculated and the result was reasonable, which provides as a reference to readers who work at related research.展开更多
文摘NOx and soot emissions from diesel engines can be greatly reduced by pressure wave supercharging(PWS).The diesel engine matched with PWS needs redesigning its exhaust pipes.Except for meeting the installation requirements,the exhaust gas must be stable in pressure before rushing into PWS.In this paper the lateral and center ported divergent exhaust pipes are designed,modeled geometrically and analyzed structurally based on a 3-D design software-CATIA to determine the structure of two exhaust pipes having the required inner volume.Then flow analysis for two exhaust pipes is done using a flow analysis software-ANASYS.Moreover,the optimal exhaust pipes are determined comprehensively and cast for engine test.Engine test results show that PWS is superior to turbocharging at low engine speeds and inferior to turbocharging in power and emissions at medium-to-high engine speeds.The performance of PWS engine under high speed operating conditions can be improved by contriving larger surge volume intake and exhaust pipes.
基金Projects(2017YFC0211202,2017YFC0211301)supported by the National Key R&D Program of China。
文摘Diesel engines meeting the latest emission regulations must be equipped with exhaust gas aftertreatment system,including diesel oxidation catalysts(DOC),diesel particulate filters(DPF),and selective catalytic reduction(SCR).However,before the final integration of the aftertreatment system(DOC+DPF+SCR)and the diesel engine,a reasonable structural optimization of the catalytic converters and a large number of bench calibration tests must be completed,involving large costs and long development cycles.The design and optimization of the exhaust gas aftertreatment system for a heavy-duty diesel engine was proposed in this paper.Firstly,one-dimensional(1D)and threedimensional(3D)computational models of the exhaust gas aftertreatment system accounting for the structural parameters of the catalytic converters were established.Then based on the calibrated models,the effects of the converter’s structural parameters on their main performance indicators,including the conversion of various exhaust pollutants and the temperatures and pressure drops of the converters,were studied.Finally,the optimal design scheme was obtained.The temperature distribution of the solid substrates and pressure distributions of the catalytic converters were studied based on the 3D model.The method proposed in this paper has guiding significance for the optimization of diesel engine aftertreatment systems.
文摘Combining real accelerating genetic algorithm(RAGA) with the optimization design of multi-hole and varied diameter pipe, the authors solved the problem of optimizing multi-dimensional parameters at the same time. In which the advanced convergence and easily to run into partial optimization were avoid. Applied the RAGA to solving the problem in the optimization design of fixed piping sprinkler irrigation system. The optimized parameters, such as diameters and the length of pipe were calculated and the result was reasonable, which provides as a reference to readers who work at related research.