In this study,to better decide the effect of coal seam dip angle upon the dynamic change of the crossfusion in gas transport and storage areas during the progress of working face in the high gas thick coal seam,a two-...In this study,to better decide the effect of coal seam dip angle upon the dynamic change of the crossfusion in gas transport and storage areas during the progress of working face in the high gas thick coal seam,a two-dimensional physical simulation experiment regarded as the theoretical research was conducted to properly explore the variation law of overburden fracture.The results demonstrated that the boundary of the gas transport zone was located in the region of fracture separation.The boundary of the gas storage area was located in the abrupt penetration zone.Also,according to the information theory,the state of the gas transport and storage areas was determined by the changing trend of the fracture rate and fracture entropy.The mathematical representation model of the dip effect in gas transport and storage areas was established.The criteria upon which the regional location of the gas transport area and gas storage area can be based were put forward.The cross-fusion evolution process of the dip effect in gas transport and storage areas was revealed as well.The research results could provide guidance for realising directional and accurate gas extraction.展开更多
Despite numerous research investigations to understand the influences of various structural parameters,to the authors'knowledge,no research has been the effect of different angles of incidence on stab response and...Despite numerous research investigations to understand the influences of various structural parameters,to the authors'knowledge,no research has been the effect of different angles of incidence on stab response and performance of different types of protective textiles.Three distinct structures of 3D woven textiles and 2D plain weave fabric made with similar high-performance fiber and areal density were designed and manufactured to be tested.Two samples,one composed of a single and the other of 4-panel layers,from each fabric type structure,were prepared,and tested against stabbing at[0○],[22.5○],and[45○]angle of incidence.A new stabbing experimental setup that entertained testing of the specimens at various angles of incidence was engineered and utilized.The stabbing bench is also equipped with magnetic sensors and a UK Home Office Scientific Development Branch(HOSDB)/P1/B sharpness engineered knives to measure the impact velocity and exerted impact energy respectively.A silicon compound was utilized to imprint the Back Face Signature(BFS)on the backing material after every specimen test.Each silicon print was then scanned,digitized,and precisely measured to evaluate the stab response and performance of the specimen based on different performance variables,including Depth of Trauma(DOT),Depth of Penetration(DOP),and Length of Penetration(LOP).Besides,the post-impact surface failure modes of the fabrics were also measured using Image software and analyzed at the microscale level.The results show stab angle of incidence greatly influences the stab response and performance of protective textiles.The outcome of the study could provide not only valuable insights into understanding the stab response and capabilities of protective textiles under different angle of incidence,but also provide valuable information for protective textile manufacturer,armor developer and stab testing and standardizing organizations to consider the angle of incidence while developing,testing,optimizing,and using protective textiles in various applications.展开更多
Moirésuperlattices in twisted two-dimensional materials have emerged as ideal platforms for engineering quantum phenomena,which are highly sensitive to twist angles,including both the global value and the spatial...Moirésuperlattices in twisted two-dimensional materials have emerged as ideal platforms for engineering quantum phenomena,which are highly sensitive to twist angles,including both the global value and the spatial inhomogeneity.However,only a few methods provide spatial-resolved information for characterizing local twist angle distribution.展开更多
The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique re...The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique relies on applying a bias magnetic field precisely parallel to the wave vector of a circularly polarized trapping laser field. However, due to the presence of the vector light shift experienced by the trapped atoms, it is challenging to precisely define a parallel magnetic field, especially at a low bias magnetic field strength, for the magic-intensity trapping of85Rb qubits. In this work, we present a method to calibrate the angle between the bias magnetic field and the trapping laser field with the compensating magnetic fields in the other two directions orthogonal to the bias magnetic field direction. Experimentally, with a constantdepth trap and a fixed bias magnetic field, we measure the respective resonant frequencies of the atomic qubits in a linearly polarized trap and a circularly polarized one via the conventional microwave Rabi spectra with different compensating magnetic fields and obtain the corresponding total magnetic fields via the respective resonant frequencies using the Breit–Rabi formula. With known total magnetic fields, the angle is a function of the other two compensating magnetic fields.Finally, the projection value of the angle on either of the directions orthogonal to the bias magnetic field direction can be reduced to 0(4)° by applying specific compensating magnetic fields. The measurement error is mainly attributed to the fluctuation of atomic temperature. Moreover, it also demonstrates that, even for a small angle, the effect is strong enough to cause large decoherence of Rabi oscillation in a magic-intensity trap. Although the compensation method demonstrated here is explored for the magic-intensity trapping technique, it can be applied to a variety of similar precision measurements with trapped neutral atoms.展开更多
The attack angle may greatly affect the hypersonic plasma sheaths around the re-entry vehicle,thereby affecting the transmission characteristics of electromagnetic(EM)waves in the sheaths.In this paper,we propose an i...The attack angle may greatly affect the hypersonic plasma sheaths around the re-entry vehicle,thereby affecting the transmission characteristics of electromagnetic(EM)waves in the sheaths.In this paper,we propose an integrated three-dimensional(3D)model with various attack angles and realistic flying conditions of radio attenuation measurement C-II(RAM C-II)re-entry tasks for analyzing the effect of the attack angle on the transmission characteristics of EM waves in the sheaths.It is shown that the electron density and collision frequency of the sheath on the windward side can be increased by an order of magnitude with the increase of the attack angle.Meanwhile,the thickness of the sheath on the leeward side is increased where the electron density and collision frequency are reduced.The EM waves are mainly reflected on the windward plasma sheath due to the cutoff effect,and the radio-frequency(RF)blackout is mitigated if the antenna is positioned on the leeward side.Thus,by planning the trajectory properly and installing the antenna accordingly during the re-entry,it is possible to provide an approach for mitigation of the RF blackout problem to an extent.展开更多
A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combin...A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combined with 3D advanced numerical simulations performed using the IMPETUS Afea? software yielded the conclusions.The experimental verification proved that slight differences in the pitch-andyaw angles of a projectile upon an impact caused different damage types to the projectile’s core.The residual velocities predicted numerically were close to the experimental values and the calculated core deviations were in satisfactory agreement with the experimental results.An extended matrix of the core deviation angles with combinations of pitch-and-yaw upon impact angles was subsequently built on the basis of the numerical study.The presented experimental and numerical investigation examined thoroughly the influence of the initial pitch and yaw angles on the after-perforation projectile’s performance.展开更多
Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft ...Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft unsteady aerodynamic design and flight dynamics analysis.In this paper,aiming at the problems of poor generalization of traditional aerodynamic models and intelligent models,an intelligent aerodynamic modeling method based on gated neural units is proposed.The time memory characteristics of the gated neural unit is fully utilized,thus the nonlinear flow field characterization ability of the learning and training process is enhanced,and the generalization ability of the whole prediction model is improved.The prediction and verification of the model are carried out under the maneuvering flight condition of NACA0015 airfoil.The results show that the model has good adaptability.In the interpolation prediction,the maximum prediction error of the lift and drag coefficients and the moment coefficient does not exceed 10%,which can basically represent the variation characteristics of the entire flow field.In the construction of extrapolation models,the training model based on the strong nonlinear data has good accuracy for weak nonlinear prediction.Furthermore,the error is larger,even exceeding 20%,which indicates that the extrapolation and generalization capabilities need to be further optimized by integrating physical models.Compared with the conventional state space equation model,the proposed method can improve the extrapolation accuracy and efficiency by 78%and 60%,respectively,which demonstrates the applied potential of this method in aerodynamic modeling.展开更多
This paper describes the experimental analysis and preliminary investigation of the predictability of pitch angle scattering(PAS) events through the electron cyclotron emission(ECE)radiometer signals at the ADITYA-Upg...This paper describes the experimental analysis and preliminary investigation of the predictability of pitch angle scattering(PAS) events through the electron cyclotron emission(ECE)radiometer signals at the ADITYA-Upgrade(ADITYA-U) tokamak. For low-density discharges at ADITYA-U, a sudden abnormal rise is observed in the ECE signature while other plasma parameters are unchanged. Investigations are done to understand this abrupt rise that is expected to occur due to PAS. The rise time is as fast as 100 μs with a single step and/or multiple step rise in ECE radiometer measurements. This event is known to limit the on-axis energy of runaway electrons. Being a repetitive event, the conditions of its repetitive occurrence can be investigated, thereby exploring the possibility of it being triggered and surveyed as an alternate runaway electron mitigation plan. Functional parameterization of such events with other discharge parameters is obtained and the possibility to trigger these events is discussed.PREDICT code is used to investigate the possible interpretations for the PAS occurrence through modeling and supporting the ECE observations. The trigger values so obtained experimentally are set as input criteria for PAS occurrence. Preliminary modeling investigations provide reliable consistency with the findings.展开更多
Pre-stack seismic inversion is an effective way to investigate the characteristics of hydrocarbon-bearing reservoirs.Multi-parameter application is the key to identifying reservoir lithology and fluid in pre-stack inv...Pre-stack seismic inversion is an effective way to investigate the characteristics of hydrocarbon-bearing reservoirs.Multi-parameter application is the key to identifying reservoir lithology and fluid in pre-stack inversion.However,multi-parameter inversion may bring coupling effects on the parameters and destabilize the inversion.In addition,the lateral recognition accuracy of geological structures receives great attention.To address these challenges,a multi-task learning network considering the angle-gather difference is proposed in this work.The deep learning network is usually assumed as a black box and it is unclear what it can learn.However,the introduction of angle-gather difference can force the deep learning network to focus on the lateral differences,thus improving the lateral accuracy of the prediction profile.The proposed deep learning network includes input and output blocks.First,angle gathers and the angle-gather difference are fed into two separate input blocks with Res Net architecture and Unet architecture,respectively.Then,three elastic parameters,including P-and S-wave velocities and density,are simultaneously predicted based on the idea of multi-task learning by using three separate output blocks with the same convolutional network layers.Experimental and field data tests demonstrate the effectiveness of the proposed method in improving the prediction accuracy of seismic elastic parameters.展开更多
This paper studies the prescribed contact angle boundary value problem of a certain type of mean curvature equation.Applying the maximum principle and the moving frame method and based on the location of the maximum p...This paper studies the prescribed contact angle boundary value problem of a certain type of mean curvature equation.Applying the maximum principle and the moving frame method and based on the location of the maximum point,the boundary gradient estimation of the solutions to the equation is obtained.展开更多
The microfibril angle of seven poplar clones was determined by using X-ray diffraction technique. Microfibril angle, wood basic density, fiber length, fiber width and cellulose content were assessed for every growth r...The microfibril angle of seven poplar clones was determined by using X-ray diffraction technique. Microfibril angle, wood basic density, fiber length, fiber width and cellulose content were assessed for every growth ring at breast height for all sample trees. Significant variation in microfibril angle was observed among growth rings. Mean microfibril angle (MFA) at breast height varied from 7.8?to 28?between growth rings with cambial age and showed a consistent pith-to-bark trend of decline an-gles. Analysis of variance also indicated that there were significant differences in wood basic density, fiber length, fiber width and cellulose content between the growth rings, which had an increasing tendency from pith to bark. Correlations between MFA and examined wood properties were predominantly large and significant negative (?0.01), and the coefficients were -0.660 for cellulose content, -0.586 for fiber length, -0.516 for fiber width and -0.450 for wood basic density, respectively. Regression analysis with linear and curve estimation indicated that a quadratic function showed the largest R2 and the least standard error for describing the relationships between microfibril angle and measured wood properties, and the correlation coefficients were over -0.45 (n=125). The results from this study suggested that microfibril angle would be a good characteristic for improvement in the future breeding program of poplars.展开更多
Tire slip angle has a great influence on peak values of both logitudinal and lateral adhesion coefficients as well as optimal slip ratios. Regression equations based on the experi- mental data from several countries...Tire slip angle has a great influence on peak values of both logitudinal and lateral adhesion coefficients as well as optimal slip ratios. Regression equations based on the experi- mental data from several countries are given to describe their dependencies. The peak value of longitudiinal adhesion coefficient has a linear relationship with tire slip angle, but peak value of lateral has a complicated relationship; the optimal slip ratio of longitudinal has an exponent function relationship, the optimal slip ratio of lateral almost has nothinng to do with tire slipangle.展开更多
An integrated dynamic model considering the influence of the helix angle is developed through dividing the cutting process into three cutting processes: uninterrupted, entry, and exit cutting processes. The semi-disc...An integrated dynamic model considering the influence of the helix angle is developed through dividing the cutting process into three cutting processes: uninterrupted, entry, and exit cutting processes. The semi-discretized technique is used to approximate the finite dimensional Floquet transition matrix of the dynamic control equation to determine the stability of milling process. The stability charts for helix mills are obtained. Results show that the helix angle plays an important role in the stability of milling process. The stability regions with helix angle become larger than those without helix angle. Some "islands" are presented in the stability charts, and "island" locations are determined by the relation between the axial depth of cut and the helix pitch. The "islands" are connected by the "bridge" by the effects of entry and exit cutting processes. The theoretical results are validated by milling experiments.展开更多
A localization algorithm using distance and angle information is proposed in wireless sensor networks. Assuming that node axial orientations are unknown, all angles are measured to calculate the angle differences betw...A localization algorithm using distance and angle information is proposed in wireless sensor networks. Assuming that node axial orientations are unknown, all angles are measured to calculate the angle differences between two nodes viewed by the third one. Then, localization problems are formulated as convex optimization ones and all geometric relationships among different nodes in the communication range are transformed into linear or quadratic constraints. If all measurements are accurate, the localization problem can be formulated as linear programming (LP). Otherwise, by incorporating auxiliary variables, it can be regarded as quadratic programming (QP). Simulations show the effectiveness of the proposed algorithm.展开更多
基金supported by the National Natural Science Foundation of China(No.5217-4205)Shaanxi Provincial Outstanding Youth Science Fund Project(No.2023-JC-JQ-40)+4 种基金National Key Research and Development Project(No.2023YFC3009004)Key Project of Shaanxi Provincial Department of Education(No.22JY040)Xinjiang Uygur Autonomous Region Key Research and Development Task Special Project(No.2022B01034-3)Key Laboratory of Green Coal Mining in Xinjiang,Ministry of Education(No.KLXGY-KA2404)Shaanxi Provincial Key Research and Development Task General Project(No.2024GX–YBXM-490)。
文摘In this study,to better decide the effect of coal seam dip angle upon the dynamic change of the crossfusion in gas transport and storage areas during the progress of working face in the high gas thick coal seam,a two-dimensional physical simulation experiment regarded as the theoretical research was conducted to properly explore the variation law of overburden fracture.The results demonstrated that the boundary of the gas transport zone was located in the region of fracture separation.The boundary of the gas storage area was located in the abrupt penetration zone.Also,according to the information theory,the state of the gas transport and storage areas was determined by the changing trend of the fracture rate and fracture entropy.The mathematical representation model of the dip effect in gas transport and storage areas was established.The criteria upon which the regional location of the gas transport area and gas storage area can be based were put forward.The cross-fusion evolution process of the dip effect in gas transport and storage areas was revealed as well.The research results could provide guidance for realising directional and accurate gas extraction.
文摘Despite numerous research investigations to understand the influences of various structural parameters,to the authors'knowledge,no research has been the effect of different angles of incidence on stab response and performance of different types of protective textiles.Three distinct structures of 3D woven textiles and 2D plain weave fabric made with similar high-performance fiber and areal density were designed and manufactured to be tested.Two samples,one composed of a single and the other of 4-panel layers,from each fabric type structure,were prepared,and tested against stabbing at[0○],[22.5○],and[45○]angle of incidence.A new stabbing experimental setup that entertained testing of the specimens at various angles of incidence was engineered and utilized.The stabbing bench is also equipped with magnetic sensors and a UK Home Office Scientific Development Branch(HOSDB)/P1/B sharpness engineered knives to measure the impact velocity and exerted impact energy respectively.A silicon compound was utilized to imprint the Back Face Signature(BFS)on the backing material after every specimen test.Each silicon print was then scanned,digitized,and precisely measured to evaluate the stab response and performance of the specimen based on different performance variables,including Depth of Trauma(DOT),Depth of Penetration(DOP),and Length of Penetration(LOP).Besides,the post-impact surface failure modes of the fabrics were also measured using Image software and analyzed at the microscale level.The results show stab angle of incidence greatly influences the stab response and performance of protective textiles.The outcome of the study could provide not only valuable insights into understanding the stab response and capabilities of protective textiles under different angle of incidence,but also provide valuable information for protective textile manufacturer,armor developer and stab testing and standardizing organizations to consider the angle of incidence while developing,testing,optimizing,and using protective textiles in various applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.61888102 and 12374199)the National Key Research&Development Projects of China(Grant Nos.2022YFA1204100,2019YFA0308501,and 2021YFA1401300)+1 种基金the Chinese Academy of Sciences(Grant No.XDB33030100)the Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700)。
文摘Moirésuperlattices in twisted two-dimensional materials have emerged as ideal platforms for engineering quantum phenomena,which are highly sensitive to twist angles,including both the global value and the spatial inhomogeneity.However,only a few methods provide spatial-resolved information for characterizing local twist angle distribution.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12104414,12122412,12104464,and 12104413)the China Postdoctoral Science Foundation(Grant No.2021M702955).
文摘The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique relies on applying a bias magnetic field precisely parallel to the wave vector of a circularly polarized trapping laser field. However, due to the presence of the vector light shift experienced by the trapped atoms, it is challenging to precisely define a parallel magnetic field, especially at a low bias magnetic field strength, for the magic-intensity trapping of85Rb qubits. In this work, we present a method to calibrate the angle between the bias magnetic field and the trapping laser field with the compensating magnetic fields in the other two directions orthogonal to the bias magnetic field direction. Experimentally, with a constantdepth trap and a fixed bias magnetic field, we measure the respective resonant frequencies of the atomic qubits in a linearly polarized trap and a circularly polarized one via the conventional microwave Rabi spectra with different compensating magnetic fields and obtain the corresponding total magnetic fields via the respective resonant frequencies using the Breit–Rabi formula. With known total magnetic fields, the angle is a function of the other two compensating magnetic fields.Finally, the projection value of the angle on either of the directions orthogonal to the bias magnetic field direction can be reduced to 0(4)° by applying specific compensating magnetic fields. The measurement error is mainly attributed to the fluctuation of atomic temperature. Moreover, it also demonstrates that, even for a small angle, the effect is strong enough to cause large decoherence of Rabi oscillation in a magic-intensity trap. Although the compensation method demonstrated here is explored for the magic-intensity trapping technique, it can be applied to a variety of similar precision measurements with trapped neutral atoms.
基金supported by National Natural Science Foundation of China(Nos.92271202 and 92371105)。
文摘The attack angle may greatly affect the hypersonic plasma sheaths around the re-entry vehicle,thereby affecting the transmission characteristics of electromagnetic(EM)waves in the sheaths.In this paper,we propose an integrated three-dimensional(3D)model with various attack angles and realistic flying conditions of radio attenuation measurement C-II(RAM C-II)re-entry tasks for analyzing the effect of the attack angle on the transmission characteristics of EM waves in the sheaths.It is shown that the electron density and collision frequency of the sheath on the windward side can be increased by an order of magnitude with the increase of the attack angle.Meanwhile,the thickness of the sheath on the leeward side is increased where the electron density and collision frequency are reduced.The EM waves are mainly reflected on the windward plasma sheath due to the cutoff effect,and the radio-frequency(RF)blackout is mitigated if the antenna is positioned on the leeward side.Thus,by planning the trajectory properly and installing the antenna accordingly during the re-entry,it is possible to provide an approach for mitigation of the RF blackout problem to an extent.
文摘A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combined with 3D advanced numerical simulations performed using the IMPETUS Afea? software yielded the conclusions.The experimental verification proved that slight differences in the pitch-andyaw angles of a projectile upon an impact caused different damage types to the projectile’s core.The residual velocities predicted numerically were close to the experimental values and the calculated core deviations were in satisfactory agreement with the experimental results.An extended matrix of the core deviation angles with combinations of pitch-and-yaw upon impact angles was subsequently built on the basis of the numerical study.The presented experimental and numerical investigation examined thoroughly the influence of the initial pitch and yaw angles on the after-perforation projectile’s performance.
基金supported in part by the National Natural Science Foundation of China (No. 12202363)。
文摘Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft unsteady aerodynamic design and flight dynamics analysis.In this paper,aiming at the problems of poor generalization of traditional aerodynamic models and intelligent models,an intelligent aerodynamic modeling method based on gated neural units is proposed.The time memory characteristics of the gated neural unit is fully utilized,thus the nonlinear flow field characterization ability of the learning and training process is enhanced,and the generalization ability of the whole prediction model is improved.The prediction and verification of the model are carried out under the maneuvering flight condition of NACA0015 airfoil.The results show that the model has good adaptability.In the interpolation prediction,the maximum prediction error of the lift and drag coefficients and the moment coefficient does not exceed 10%,which can basically represent the variation characteristics of the entire flow field.In the construction of extrapolation models,the training model based on the strong nonlinear data has good accuracy for weak nonlinear prediction.Furthermore,the error is larger,even exceeding 20%,which indicates that the extrapolation and generalization capabilities need to be further optimized by integrating physical models.Compared with the conventional state space equation model,the proposed method can improve the extrapolation accuracy and efficiency by 78%and 60%,respectively,which demonstrates the applied potential of this method in aerodynamic modeling.
文摘This paper describes the experimental analysis and preliminary investigation of the predictability of pitch angle scattering(PAS) events through the electron cyclotron emission(ECE)radiometer signals at the ADITYA-Upgrade(ADITYA-U) tokamak. For low-density discharges at ADITYA-U, a sudden abnormal rise is observed in the ECE signature while other plasma parameters are unchanged. Investigations are done to understand this abrupt rise that is expected to occur due to PAS. The rise time is as fast as 100 μs with a single step and/or multiple step rise in ECE radiometer measurements. This event is known to limit the on-axis energy of runaway electrons. Being a repetitive event, the conditions of its repetitive occurrence can be investigated, thereby exploring the possibility of it being triggered and surveyed as an alternate runaway electron mitigation plan. Functional parameterization of such events with other discharge parameters is obtained and the possibility to trigger these events is discussed.PREDICT code is used to investigate the possible interpretations for the PAS occurrence through modeling and supporting the ECE observations. The trigger values so obtained experimentally are set as input criteria for PAS occurrence. Preliminary modeling investigations provide reliable consistency with the findings.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42130810,42204135,42174170,and 42074165)the Natural Science Foundation of Hunan Province(Grant No.2023JJ40716)。
文摘Pre-stack seismic inversion is an effective way to investigate the characteristics of hydrocarbon-bearing reservoirs.Multi-parameter application is the key to identifying reservoir lithology and fluid in pre-stack inversion.However,multi-parameter inversion may bring coupling effects on the parameters and destabilize the inversion.In addition,the lateral recognition accuracy of geological structures receives great attention.To address these challenges,a multi-task learning network considering the angle-gather difference is proposed in this work.The deep learning network is usually assumed as a black box and it is unclear what it can learn.However,the introduction of angle-gather difference can force the deep learning network to focus on the lateral differences,thus improving the lateral accuracy of the prediction profile.The proposed deep learning network includes input and output blocks.First,angle gathers and the angle-gather difference are fed into two separate input blocks with Res Net architecture and Unet architecture,respectively.Then,three elastic parameters,including P-and S-wave velocities and density,are simultaneously predicted based on the idea of multi-task learning by using three separate output blocks with the same convolutional network layers.Experimental and field data tests demonstrate the effectiveness of the proposed method in improving the prediction accuracy of seismic elastic parameters.
基金supported by the National Natural Science Foundation of China (No.12061078)。
文摘This paper studies the prescribed contact angle boundary value problem of a certain type of mean curvature equation.Applying the maximum principle and the moving frame method and based on the location of the maximum point,the boundary gradient estimation of the solutions to the equation is obtained.
基金This research was supported by National Natural Science Foundation of China (Grant No. 30070616).
文摘The microfibril angle of seven poplar clones was determined by using X-ray diffraction technique. Microfibril angle, wood basic density, fiber length, fiber width and cellulose content were assessed for every growth ring at breast height for all sample trees. Significant variation in microfibril angle was observed among growth rings. Mean microfibril angle (MFA) at breast height varied from 7.8?to 28?between growth rings with cambial age and showed a consistent pith-to-bark trend of decline an-gles. Analysis of variance also indicated that there were significant differences in wood basic density, fiber length, fiber width and cellulose content between the growth rings, which had an increasing tendency from pith to bark. Correlations between MFA and examined wood properties were predominantly large and significant negative (?0.01), and the coefficients were -0.660 for cellulose content, -0.586 for fiber length, -0.516 for fiber width and -0.450 for wood basic density, respectively. Regression analysis with linear and curve estimation indicated that a quadratic function showed the largest R2 and the least standard error for describing the relationships between microfibril angle and measured wood properties, and the correlation coefficients were over -0.45 (n=125). The results from this study suggested that microfibril angle would be a good characteristic for improvement in the future breeding program of poplars.
文摘Tire slip angle has a great influence on peak values of both logitudinal and lateral adhesion coefficients as well as optimal slip ratios. Regression equations based on the experi- mental data from several countries are given to describe their dependencies. The peak value of longitudiinal adhesion coefficient has a linear relationship with tire slip angle, but peak value of lateral has a complicated relationship; the optimal slip ratio of longitudinal has an exponent function relationship, the optimal slip ratio of lateral almost has nothinng to do with tire slipangle.
文摘An integrated dynamic model considering the influence of the helix angle is developed through dividing the cutting process into three cutting processes: uninterrupted, entry, and exit cutting processes. The semi-discretized technique is used to approximate the finite dimensional Floquet transition matrix of the dynamic control equation to determine the stability of milling process. The stability charts for helix mills are obtained. Results show that the helix angle plays an important role in the stability of milling process. The stability regions with helix angle become larger than those without helix angle. Some "islands" are presented in the stability charts, and "island" locations are determined by the relation between the axial depth of cut and the helix pitch. The "islands" are connected by the "bridge" by the effects of entry and exit cutting processes. The theoretical results are validated by milling experiments.
文摘A localization algorithm using distance and angle information is proposed in wireless sensor networks. Assuming that node axial orientations are unknown, all angles are measured to calculate the angle differences between two nodes viewed by the third one. Then, localization problems are formulated as convex optimization ones and all geometric relationships among different nodes in the communication range are transformed into linear or quadratic constraints. If all measurements are accurate, the localization problem can be formulated as linear programming (LP). Otherwise, by incorporating auxiliary variables, it can be regarded as quadratic programming (QP). Simulations show the effectiveness of the proposed algorithm.