The macro modeling and the solution of traffic flow with road width were investigated.Firstly,a new macro model with the consideration of road width was proposed.Secondly,the effects of road width on uniform flow and ...The macro modeling and the solution of traffic flow with road width were investigated.Firstly,a new macro model with the consideration of road width was proposed.Secondly,the effects of road width on uniform flow and small perturbation were studied.The analytical and numerical results show that widening (shrinking) road can enhance (reduce) the equilibrium speed and flow,and the increments (decrements) will increase with the absolute value of road width gradient.In addition,the numerical results illustrate that the new model can describe the effects of road width on the evolutions of uniform flow and small perturbation.展开更多
In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed sign...In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed signal control at intersections, traffic assignment under traffic flow guidance, and dynamic characteristics of urban traffic management, a tri-level programming model is presented. To reflect the impact of intersection delay on traffic assignment, the lower level model is set as a modified user equilibrium model. The middle level model, which contains several definitional constraints for different phase modes, is built for the traffic signal control optimization. To solve the problem of tide lane management, the upper level model is built up based on nonlinear 0-1 integer programming. A heuristic iterative optimization algorithm(HIOA) is set up to solve the tri-level programming model. The lower level model is solved by method of successive averages(MSA), the middle level model is solved by non-dominated sorting genetic algorithm II(NSGA II), and the upper level model is solved by genetic algorithm(GA). A case study is raised to show the efficiency and applicability of the proposed modelling and computing method.展开更多
This paper will develop a model simulation mixing traffic flow in the signal controlintersection. Applying the model, the schemes of traffic channeling and controlling in the typical intersection are analyzed and opti...This paper will develop a model simulation mixing traffic flow in the signal controlintersection. Applying the model, the schemes of traffic channeling and controlling in the typical intersection are analyzed and optimized and the optimal scheme make the average stop frequency be reduced by 31.8% and average stop time be reduced by 27.7%.展开更多
In order to investigate enhancements to cell transmission model (CTM) as a tool for traffic signal timing in oversaturated conditions, randomly distributed saturation flow rates and arrival rates were used instead of ...In order to investigate enhancements to cell transmission model (CTM) as a tool for traffic signal timing in oversaturated conditions, randomly distributed saturation flow rates and arrival rates were used instead of constant values to simulate traffic flow movement, estimate the average delay of the network and search for an optimal traffic signal timing plan. A case study was given to demonstrate that the proposed methodology can capture unique phenomena in oversaturated conditions such as forward wave, spillback and lane entrance blockage. The results show that CTM underestimates travel time by 25% when compared to Simtraffic, while the enhanced CTM underestimates by only 3%. A second case study shows that a dynamic signal timing plan is superior to a fixed signal timing plan in the term of average delay.展开更多
In order to describe the characteristics of dynamic traffic flow and improve the robustness of its multiple applications, a dynamic traffic temporal-spatial model(DTTS) is established. With consideration of the tempor...In order to describe the characteristics of dynamic traffic flow and improve the robustness of its multiple applications, a dynamic traffic temporal-spatial model(DTTS) is established. With consideration of the temporal correlation, spatial correlation and historical correlation, a basic DTTS model is built. And a three-stage approach is put forward for the simplification and calibration of the basic DTTS model. Through critical sections pre-selection and critical time pre-selection, the first stage reduces the variable number of the basic DTTS model. In the second stage, variable coefficient calibration is implemented based on basic model simplification and stepwise regression analysis. Aimed at dynamic noise estimation, the characteristics of noise are summarized and an extreme learning machine is presented in the third stage. A case study based on a real-world road network in Beijing, China, is carried out to test the efficiency and applicability of proposed DTTS model and the three-stage approach.展开更多
为研究大跨度悬索桥在随机车流作用下加劲梁纵向运动及纵向累计位移行程简化计算方法,基于移动荷载作用下加劲梁纵向运动特征,将悬挂加劲梁体系等效为单自度(single-degree-of-freedom,SDOF)振动体系,推导了基于SDOF振动体系的移动荷载...为研究大跨度悬索桥在随机车流作用下加劲梁纵向运动及纵向累计位移行程简化计算方法,基于移动荷载作用下加劲梁纵向运动特征,将悬挂加劲梁体系等效为单自度(single-degree-of-freedom,SDOF)振动体系,推导了基于SDOF振动体系的移动荷载作用下悬索桥加劲梁纵向振动方程和随机车流作用下加劲梁纵向振动方程,提出了一种快速计算随机车流作用下加劲梁纵向振动响应的方法。以某单跨悬索桥为实例,基于实测车流数据,采用蒙特卡罗抽样方法生成随机车流样本,将其等效为SDOF体系下随机荷载时程,进行SDOF体系振动方程求解得到纵向响应位移时程,并与基于ANSYS的全桥模型瞬态分析结果进行对比。结果表明:随机车流作用下,加劲梁发生纵向运动并形成巨大累计位移行程,累计位移包括静态位移和动态位移,后者对累计位移贡献更大;与有限元瞬态动力分析相比,基于简化SDOF体系获得的位移响应结果中除累计位移差别稍大(约13%~19%)外,其幅值和均方根值(root mean square,RMS)均差别很小(小于5%),简化振动模型能反映随机车流下加劲梁纵向运动特征规律,所提计算方法可极大地简化随机车流作用下加劲梁纵向运动分析,可用于结构设计阶段随机车流作用下加劲梁纵向运动评估及振动控制参数优化。展开更多
基金Project(NCET-08-0038) supported by the Program for New Century Excellent Talents in Chinese UniversityProjects(70701002,70971007 and 70521001) supported by the National Natural Science Foundation of ChinaProject(2006CB705503) supported by the National Basic Research Program of China
文摘The macro modeling and the solution of traffic flow with road width were investigated.Firstly,a new macro model with the consideration of road width was proposed.Secondly,the effects of road width on uniform flow and small perturbation were studied.The analytical and numerical results show that widening (shrinking) road can enhance (reduce) the equilibrium speed and flow,and the increments (decrements) will increase with the absolute value of road width gradient.In addition,the numerical results illustrate that the new model can describe the effects of road width on the evolutions of uniform flow and small perturbation.
基金Project(2014BAG01B0403)supported by the High-Tech Research and Development Program of China
文摘In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed signal control at intersections, traffic assignment under traffic flow guidance, and dynamic characteristics of urban traffic management, a tri-level programming model is presented. To reflect the impact of intersection delay on traffic assignment, the lower level model is set as a modified user equilibrium model. The middle level model, which contains several definitional constraints for different phase modes, is built for the traffic signal control optimization. To solve the problem of tide lane management, the upper level model is built up based on nonlinear 0-1 integer programming. A heuristic iterative optimization algorithm(HIOA) is set up to solve the tri-level programming model. The lower level model is solved by method of successive averages(MSA), the middle level model is solved by non-dominated sorting genetic algorithm II(NSGA II), and the upper level model is solved by genetic algorithm(GA). A case study is raised to show the efficiency and applicability of the proposed modelling and computing method.
文摘This paper will develop a model simulation mixing traffic flow in the signal controlintersection. Applying the model, the schemes of traffic channeling and controlling in the typical intersection are analyzed and optimized and the optimal scheme make the average stop frequency be reduced by 31.8% and average stop time be reduced by 27.7%.
基金Project(51108343) supported by the National Natural Science Foundation of ChinaProject(06121) supported by University of Transportation Center for Alabama, USA
文摘In order to investigate enhancements to cell transmission model (CTM) as a tool for traffic signal timing in oversaturated conditions, randomly distributed saturation flow rates and arrival rates were used instead of constant values to simulate traffic flow movement, estimate the average delay of the network and search for an optimal traffic signal timing plan. A case study was given to demonstrate that the proposed methodology can capture unique phenomena in oversaturated conditions such as forward wave, spillback and lane entrance blockage. The results show that CTM underestimates travel time by 25% when compared to Simtraffic, while the enhanced CTM underestimates by only 3%. A second case study shows that a dynamic signal timing plan is superior to a fixed signal timing plan in the term of average delay.
基金Project(2014BAG01B0403)supported by the National High-Tech Research and Development Program of China
文摘In order to describe the characteristics of dynamic traffic flow and improve the robustness of its multiple applications, a dynamic traffic temporal-spatial model(DTTS) is established. With consideration of the temporal correlation, spatial correlation and historical correlation, a basic DTTS model is built. And a three-stage approach is put forward for the simplification and calibration of the basic DTTS model. Through critical sections pre-selection and critical time pre-selection, the first stage reduces the variable number of the basic DTTS model. In the second stage, variable coefficient calibration is implemented based on basic model simplification and stepwise regression analysis. Aimed at dynamic noise estimation, the characteristics of noise are summarized and an extreme learning machine is presented in the third stage. A case study based on a real-world road network in Beijing, China, is carried out to test the efficiency and applicability of proposed DTTS model and the three-stage approach.
文摘为研究大跨度悬索桥在随机车流作用下加劲梁纵向运动及纵向累计位移行程简化计算方法,基于移动荷载作用下加劲梁纵向运动特征,将悬挂加劲梁体系等效为单自度(single-degree-of-freedom,SDOF)振动体系,推导了基于SDOF振动体系的移动荷载作用下悬索桥加劲梁纵向振动方程和随机车流作用下加劲梁纵向振动方程,提出了一种快速计算随机车流作用下加劲梁纵向振动响应的方法。以某单跨悬索桥为实例,基于实测车流数据,采用蒙特卡罗抽样方法生成随机车流样本,将其等效为SDOF体系下随机荷载时程,进行SDOF体系振动方程求解得到纵向响应位移时程,并与基于ANSYS的全桥模型瞬态分析结果进行对比。结果表明:随机车流作用下,加劲梁发生纵向运动并形成巨大累计位移行程,累计位移包括静态位移和动态位移,后者对累计位移贡献更大;与有限元瞬态动力分析相比,基于简化SDOF体系获得的位移响应结果中除累计位移差别稍大(约13%~19%)外,其幅值和均方根值(root mean square,RMS)均差别很小(小于5%),简化振动模型能反映随机车流下加劲梁纵向运动特征规律,所提计算方法可极大地简化随机车流作用下加劲梁纵向运动分析,可用于结构设计阶段随机车流作用下加劲梁纵向运动评估及振动控制参数优化。