Based on the three-dimensional Reynolds-averaged Navier-Stokes equation with the closure of renormalization group k-εturbulence model and volume of fluid method,a wave-breakwater interaction numerical flume was devel...Based on the three-dimensional Reynolds-averaged Navier-Stokes equation with the closure of renormalization group k-εturbulence model and volume of fluid method,a wave-breakwater interaction numerical flume was developed to examine the wave-structure interaction of the porous I-type composite(PITC)breakwater.The transmission and reflection coefficients of the breakwater at different wave steepness H/L are quantitatively analyzed,and the wave-dissipating performance of the breakwater is compared.By changing the submerged depth of the breakwater,the velocity field,and vorticity field in the wave propagation process are analyzed,and the optimal working water depth of the new breakwater is explored.The results show that the vertical wave force on the PITC breakwater is greater than the horizontal wave force.In addition,during the wave dissipation process,the transverse baffle provided by the new breakwater destroys the trajectory of the water particle.In the interior of the wave-breaking chamber,the water that enters from the gap of the permeable plate mixes with the water entering through the bottom hole.The turbulence created by this process further dissipates the wave energy.The relative submergence depth of h/d has a great influence on the hydrodynamic characteristics.When the relative depth is large,most of the wave energy enters the breakwater,the wave energy dissipation of the breakwater is large,and the wave-absorbing effect is good.These research results provide important referential data for the study of permeable plate breakwaters.展开更多
Based on water inrush accident of 1841 working face of Desheng Coal Mine in Wu'an, Hebei province, China, an evaluation model of hydrodynamic characteristics of the project is set up and simulated using Matlab. It...Based on water inrush accident of 1841 working face of Desheng Coal Mine in Wu'an, Hebei province, China, an evaluation model of hydrodynamic characteristics of the project is set up and simulated using Matlab. It is assumed that the pipe flow would transform into seepage flow when the aggregates are plugged into the water inrush channel and the seepage flow would disappear along with grouting process. The simulation results show that the flow velocity will increase with an increase in height of aggregates accumulation body during the aggregates filling process; the maximum seepage velocity occurs on the top of plugging zone; and the water flow decreases with increasing plugging height of water inrush channel. Finally, the field construction results show that the water inrush channel can be plugged effectively by the compacted body prepared with aggregate and cement slurry.展开更多
Using the PimpleDyMFoam solver in open-source computing software OpenFOAM,based on the SST k-ωturbulence model and PIMPLE algorithm,a numerical simulation method of vertical-axis marine current turbines(VMCTs)is prop...Using the PimpleDyMFoam solver in open-source computing software OpenFOAM,based on the SST k-ωturbulence model and PIMPLE algorithm,a numerical simulation method of vertical-axis marine current turbines(VMCTs)is proposed,and the calculated results are compared with the experimental results.The results show that the numerical simulation method is feasible.Compared with other commercial softwares,this method has the advantages of higher solution efficiency and greater flexibility.According to the needs of users,the solver can be built on the basis of original code,and the corresponding discrete method can be optimized.This method can achieve optimization algorithms,save time and cost,etc.Secondly,the effects of different parameters(mesh density,time step,the selection of sidewall boundary conditions and inlet turbulence intensity)on numerical simulation of the VMCT are studied in detail.The findings summarize an effective CFD simulation strategy based on OpenFOAM and provide a valuable reference for future CFD simulations of VMCTs.展开更多
This paper introduces the notion of Tokamak Magneto-Hydrodynamics (TMHD), which explicitly reflects the anisotropy of a high temperature tokamak plasma. The set of TMHD equations is formulated for simulation of macr...This paper introduces the notion of Tokamak Magneto-Hydrodynamics (TMHD), which explicitly reflects the anisotropy of a high temperature tokamak plasma. The set of TMHD equations is formulated for simulation of macroscopic plasma dynamics and disruptions in tokamaks. Free from the Courant restriction on the time step, this set of equations is adequate to plasma dynamics with realistic parameters of high performance plasmas and does not require any extension of the MHD plasma model. At the same time, TMHD requires the use of magnetic field aligned numerical grids. Examples of their use in 2-dimensional cases of tokamak equilibria and dynamics of the wall touching kink mode are presented. For the 3-dimensional case of an ergodic magnetic field, this paper introduces the reference magnetic coordinates as a practical algorithm for generating adaptive grids for TMHD.展开更多
Fish are able to make good use of vortices.In a complex flow field,many fish continue to maintain both efficient cruising and maneuverability.Traditional man-made propulsion systems perform poorly in complex flow fiel...Fish are able to make good use of vortices.In a complex flow field,many fish continue to maintain both efficient cruising and maneuverability.Traditional man-made propulsion systems perform poorly in complex flow fields.With fish-like propulsion systems,it is important to pay more attention to complex flow fields.In this paper,the influence of vortices on the hydrodynamic performance of 2-D flapping-foils was investigated.The flapping-foil heaved and pitched under the influence of inflow vortices generated by an oscillating D-section cylinder.A numerical simulation was run based the finite volume method,using the computational fluid dynamics(CFD) software FLUENT with Reynolds-averaged Navier-Stokes(RANS) equations applied.In addition,dynamic mesh technology and post processing systems were also fully used.The calculations showed four modes of interaction.The hydrodynamic performance of flapping-foils was analyzed and the results compared with experimental data.This validated the numerical simulation,confirming that flapping-foils can increase efficiency by absorbing energy from inflow vortices.展开更多
基金Supported by the National Natural Science Foundation of China under Grants Nos.51679015 and 52071031。
文摘Based on the three-dimensional Reynolds-averaged Navier-Stokes equation with the closure of renormalization group k-εturbulence model and volume of fluid method,a wave-breakwater interaction numerical flume was developed to examine the wave-structure interaction of the porous I-type composite(PITC)breakwater.The transmission and reflection coefficients of the breakwater at different wave steepness H/L are quantitatively analyzed,and the wave-dissipating performance of the breakwater is compared.By changing the submerged depth of the breakwater,the velocity field,and vorticity field in the wave propagation process are analyzed,and the optimal working water depth of the new breakwater is explored.The results show that the vertical wave force on the PITC breakwater is greater than the horizontal wave force.In addition,during the wave dissipation process,the transverse baffle provided by the new breakwater destroys the trajectory of the water particle.In the interior of the wave-breaking chamber,the water that enters from the gap of the permeable plate mixes with the water entering through the bottom hole.The turbulence created by this process further dissipates the wave energy.The relative submergence depth of h/d has a great influence on the hydrodynamic characteristics.When the relative depth is large,most of the wave energy enters the breakwater,the wave energy dissipation of the breakwater is large,and the wave-absorbing effect is good.These research results provide important referential data for the study of permeable plate breakwaters.
基金Financial support for this work, provided by the National Natural Science Foundation of China (Nos. 41072031, 40172119)the Natural Science Foundation of Hebei Province of China(No. D2012402008)
文摘Based on water inrush accident of 1841 working face of Desheng Coal Mine in Wu'an, Hebei province, China, an evaluation model of hydrodynamic characteristics of the project is set up and simulated using Matlab. It is assumed that the pipe flow would transform into seepage flow when the aggregates are plugged into the water inrush channel and the seepage flow would disappear along with grouting process. The simulation results show that the flow velocity will increase with an increase in height of aggregates accumulation body during the aggregates filling process; the maximum seepage velocity occurs on the top of plugging zone; and the water flow decreases with increasing plugging height of water inrush channel. Finally, the field construction results show that the water inrush channel can be plugged effectively by the compacted body prepared with aggregate and cement slurry.
基金National Natural Science Foundation of China(11572094,5171101175,51809083)。
文摘Using the PimpleDyMFoam solver in open-source computing software OpenFOAM,based on the SST k-ωturbulence model and PIMPLE algorithm,a numerical simulation method of vertical-axis marine current turbines(VMCTs)is proposed,and the calculated results are compared with the experimental results.The results show that the numerical simulation method is feasible.Compared with other commercial softwares,this method has the advantages of higher solution efficiency and greater flexibility.According to the needs of users,the solver can be built on the basis of original code,and the corresponding discrete method can be optimized.This method can achieve optimization algorithms,save time and cost,etc.Secondly,the effects of different parameters(mesh density,time step,the selection of sidewall boundary conditions and inlet turbulence intensity)on numerical simulation of the VMCT are studied in detail.The findings summarize an effective CFD simulation strategy based on OpenFOAM and provide a valuable reference for future CFD simulations of VMCTs.
基金supported by US DoE Contract No.DE-AC02-09-CH11466by the National Magnetic Confinement Fusion Science Program of China(No.2011GB105003)by the US DOE SBIR grant#94307S10-Ⅱ
文摘This paper introduces the notion of Tokamak Magneto-Hydrodynamics (TMHD), which explicitly reflects the anisotropy of a high temperature tokamak plasma. The set of TMHD equations is formulated for simulation of macroscopic plasma dynamics and disruptions in tokamaks. Free from the Courant restriction on the time step, this set of equations is adequate to plasma dynamics with realistic parameters of high performance plasmas and does not require any extension of the MHD plasma model. At the same time, TMHD requires the use of magnetic field aligned numerical grids. Examples of their use in 2-dimensional cases of tokamak equilibria and dynamics of the wall touching kink mode are presented. For the 3-dimensional case of an ergodic magnetic field, this paper introduces the reference magnetic coordinates as a practical algorithm for generating adaptive grids for TMHD.
基金Supported by the National Natural Science Foundation of China under Grant No.50579007,50879014the specialized research fund for the doctoral program of higher education under Grant No.200802170010
文摘Fish are able to make good use of vortices.In a complex flow field,many fish continue to maintain both efficient cruising and maneuverability.Traditional man-made propulsion systems perform poorly in complex flow fields.With fish-like propulsion systems,it is important to pay more attention to complex flow fields.In this paper,the influence of vortices on the hydrodynamic performance of 2-D flapping-foils was investigated.The flapping-foil heaved and pitched under the influence of inflow vortices generated by an oscillating D-section cylinder.A numerical simulation was run based the finite volume method,using the computational fluid dynamics(CFD) software FLUENT with Reynolds-averaged Navier-Stokes(RANS) equations applied.In addition,dynamic mesh technology and post processing systems were also fully used.The calculations showed four modes of interaction.The hydrodynamic performance of flapping-foils was analyzed and the results compared with experimental data.This validated the numerical simulation,confirming that flapping-foils can increase efficiency by absorbing energy from inflow vortices.