In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified medi...In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition.展开更多
Efficient reconfigurable VLSI architecture for 1-D 5/3 and 9/7 wavelet transforms adopted in JPEG2000 proposal, based on lifting scheme is proposed. The embedded decimation technique based on fold and time multiplexin...Efficient reconfigurable VLSI architecture for 1-D 5/3 and 9/7 wavelet transforms adopted in JPEG2000 proposal, based on lifting scheme is proposed. The embedded decimation technique based on fold and time multiplexing, as well as embedded boundary data extension technique, is adopted to optimize the design of the architecture. These reduce significantly the required numbers of the multipliers, adders and registers, as well as the amount of accessing external memory, and lead to decrease efficiently the hardware cost and power consumption of the design. The architecture is designed to generate an output per clock cycle, and the detailed component and the approximation of the input signal are available alternately. Experimental simulation and comparison results are presented, which demonstrate that the proposed architecture has lower hardware complexity, thus it is adapted for embedded applications. The presented architecture is simple, regular and scalable, and well suited for VLSI implementation.展开更多
针对真实环境下采集的病害图像中存在的大量噪声和复杂背景干扰,导致作物病害识别准确性和泛化性低的问题,该研究提出基于自适应BayesShrink和频-空特征融合的作物病害识别方法(adaptive BayesShrink and frequencyspatial domain featu...针对真实环境下采集的病害图像中存在的大量噪声和复杂背景干扰,导致作物病害识别准确性和泛化性低的问题,该研究提出基于自适应BayesShrink和频-空特征融合的作物病害识别方法(adaptive BayesShrink and frequencyspatial domain features fusion, AFSF-DCT)。首先,设计了自适应BayesShrink算法(Ad-BayesShrink)以减少噪声干扰,同时保留更多细节,降低识别模型提取病害特征的难度。然后提出基于频-空特征融合和动态交叉自注意机制的作物病害识别模型(crop leaf disease identification model based on frequency-spatial features fusion and dynamic cross-self-attention,FSF-DCT)。为实现全面的频-空特征映射,设计了基于离散小波变换(discrete wavelet transform,DWT)和倒残差结构(bneck)的频-空特征映射(DWT-Bneck)分支以捕获多尺度病害特征。频域分支设计了基于2D DWT的特征映射模块(2D DWT-based frequency-features decomposition module, DWFD)以捕获病害细节和纹理,用于补充空间域特征在全局信息表达上的不足。空间域分支在bneck中引入CBAM(convolutional block attention module)和Dynamic Shift Max激活函数以实现全面的空间特征映射。最后设计了动态交叉自注意特征融合模块(multi-scale features fusion network based on dynamic cross-self-attention, MDCS-DF)融合频-空特征并增强模型对病害特征的关注。结果表明,Ad-BayesShrink获得了35.78的最高峰值信噪比,优于VisuShrink和SUREShrink。FSF-DCT在自建数据集和2个开源数据集(PlantVillage和AI challenger 2018)上分别获得了99.20%、99.90%和90.75%的识别精度,且具有较小的参数量(7.48 M)和浮点运算数(4.62 G),优于当前大部分的主流识别模型。AFSF-DCT可为复杂背景下的作物叶片病害的快速精准检测提供模型参考。展开更多
Phase-frequency characte ristics of approximate sinusoidal geomagnetic signals can be used fo r projectile roll positioning and other high-precision trajectory correction applications.The sinusoidal geomagnetic signal...Phase-frequency characte ristics of approximate sinusoidal geomagnetic signals can be used fo r projectile roll positioning and other high-precision trajectory correction applications.The sinusoidal geomagnetic signal deforms in the exposed and magnetically contaminated environment.In order to preciously recognize the roll information and effectively separate the noise component from the original geomagnetic sequence,based on the error source analysis,we propose a moving horizon based wavelet de-noising method for the dual-observed geomagnetic signal filtering where the captured rough roll frequency value provides reasonable wavelet decomposition and reconstruction level selection basis for sampled sequence;a moving horizon window guarantees real-time performance and non-cumulative calculation amount.The complete geomagnetic data in full ballistic range and three intercepted paragraphs are used for performance assessment.The positioning performance of the moving horizon wavelet de-noising method is compared with the band-pass filter.The results show that both noise reduction techniques improve the positioning accuracy while the wavelet de-noising method is always better than the band-pass filter.These results suggest that the proposed moving horizon based wavelet de-noising method of the dual-observed geomagnetic signal is more applicable for various launch conditions with better positioning performance.展开更多
基金Project(2016JJ4074)supported by the Natural Science Foundation of Hunan Province,ChinaProject(14C0920)supported by the Hunan Provincial Education Department,ChinaProject(61771191)supported by the National Natural Science Foundation of China
文摘In order to overcome the phenomenon of image blur and edge loss in the process of collecting and transmitting medical image,a denoising method of medical image based on discrete wavelet transform(DWT)and modified median filter for medical image coupling denoising is proposed.The method is composed of four modules:image acquisition,image storage,image processing and image reconstruction.Image acquisition gets the medical image that contains Gaussian noise and impulse noise.Image storage includes the preservation of data and parameters of the original image and processed image.In the third module,the medical image is decomposed as four sub bands(LL,HL,LH,HH)by wavelet decomposition,where LL is low frequency,LH,HL,HH are respective for horizontal,vertical and in the diagonal line high frequency component.Using improved wavelet threshold to process high frequency coefficients and retain low frequency coefficients,the modified median filtering is performed on three high frequency sub bands after wavelet threshold processing.The last module is image reconstruction,which means getting the image after denoising by wavelet reconstruction.The advantage of this method is combining the advantages of median filter and wavelet to make the denoising effect better,not a simple combination of the two previous methods.With DWT and improved median filter coefficients coupling denoising,it is highly practical for high-precision medical images containing complex noises.The experimental results of proposed algorithm are compared with the results of median filter,wavelet transform,contourlet and DT-CWT,etc.According to visual evaluation index PSNR and SNR and Canny edge detection,in low noise images,PSNR and SNR increase by 10%–15%;in high noise images,PSNR and SNR increase by 2%–6%.The experimental results of the proposed algorithm achieved better acceptable results compared with other methods,which provides an important method for the diagnosis of medical condition.
文摘Efficient reconfigurable VLSI architecture for 1-D 5/3 and 9/7 wavelet transforms adopted in JPEG2000 proposal, based on lifting scheme is proposed. The embedded decimation technique based on fold and time multiplexing, as well as embedded boundary data extension technique, is adopted to optimize the design of the architecture. These reduce significantly the required numbers of the multipliers, adders and registers, as well as the amount of accessing external memory, and lead to decrease efficiently the hardware cost and power consumption of the design. The architecture is designed to generate an output per clock cycle, and the detailed component and the approximation of the input signal are available alternately. Experimental simulation and comparison results are presented, which demonstrate that the proposed architecture has lower hardware complexity, thus it is adapted for embedded applications. The presented architecture is simple, regular and scalable, and well suited for VLSI implementation.
文摘针对真实环境下采集的病害图像中存在的大量噪声和复杂背景干扰,导致作物病害识别准确性和泛化性低的问题,该研究提出基于自适应BayesShrink和频-空特征融合的作物病害识别方法(adaptive BayesShrink and frequencyspatial domain features fusion, AFSF-DCT)。首先,设计了自适应BayesShrink算法(Ad-BayesShrink)以减少噪声干扰,同时保留更多细节,降低识别模型提取病害特征的难度。然后提出基于频-空特征融合和动态交叉自注意机制的作物病害识别模型(crop leaf disease identification model based on frequency-spatial features fusion and dynamic cross-self-attention,FSF-DCT)。为实现全面的频-空特征映射,设计了基于离散小波变换(discrete wavelet transform,DWT)和倒残差结构(bneck)的频-空特征映射(DWT-Bneck)分支以捕获多尺度病害特征。频域分支设计了基于2D DWT的特征映射模块(2D DWT-based frequency-features decomposition module, DWFD)以捕获病害细节和纹理,用于补充空间域特征在全局信息表达上的不足。空间域分支在bneck中引入CBAM(convolutional block attention module)和Dynamic Shift Max激活函数以实现全面的空间特征映射。最后设计了动态交叉自注意特征融合模块(multi-scale features fusion network based on dynamic cross-self-attention, MDCS-DF)融合频-空特征并增强模型对病害特征的关注。结果表明,Ad-BayesShrink获得了35.78的最高峰值信噪比,优于VisuShrink和SUREShrink。FSF-DCT在自建数据集和2个开源数据集(PlantVillage和AI challenger 2018)上分别获得了99.20%、99.90%和90.75%的识别精度,且具有较小的参数量(7.48 M)和浮点运算数(4.62 G),优于当前大部分的主流识别模型。AFSF-DCT可为复杂背景下的作物叶片病害的快速精准检测提供模型参考。
基金funded by National Natural Science Foundation of China(61201391)。
文摘Phase-frequency characte ristics of approximate sinusoidal geomagnetic signals can be used fo r projectile roll positioning and other high-precision trajectory correction applications.The sinusoidal geomagnetic signal deforms in the exposed and magnetically contaminated environment.In order to preciously recognize the roll information and effectively separate the noise component from the original geomagnetic sequence,based on the error source analysis,we propose a moving horizon based wavelet de-noising method for the dual-observed geomagnetic signal filtering where the captured rough roll frequency value provides reasonable wavelet decomposition and reconstruction level selection basis for sampled sequence;a moving horizon window guarantees real-time performance and non-cumulative calculation amount.The complete geomagnetic data in full ballistic range and three intercepted paragraphs are used for performance assessment.The positioning performance of the moving horizon wavelet de-noising method is compared with the band-pass filter.The results show that both noise reduction techniques improve the positioning accuracy while the wavelet de-noising method is always better than the band-pass filter.These results suggest that the proposed moving horizon based wavelet de-noising method of the dual-observed geomagnetic signal is more applicable for various launch conditions with better positioning performance.
基金Supported by National Science Fund for Distinguished Young Scholars(60625302)National Key Fundamental Research Project of China(2002CB3122000)National High Technology Research and Development Program of China(863 Program)(20060104Z1081)