The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction ...The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction fuse actuator.The impact point easily deviates from the target,and thus the correction result cannot be readily evaluated.However,the cost of shooting tests is considerably high to conduct many tests for data collection.To address this issue,this study proposes an aiming method for shooting tests based on small sample size.The proposed method uses the Bootstrap method to expand the test data;repeatedly iterates and corrects the position of the simulated theoretical impact points through an improved compatibility test method;and dynamically adjusts the weight of the prior distribution of simulation results based on Kullback-Leibler divergence,which to some extent avoids the real data being"submerged"by the simulation data and achieves the fusion Bayesian estimation of the dispersion center.The experimental results show that when the simulation accuracy is sufficiently high,the proposed method yields a smaller mean-square deviation in estimating the dispersion center and higher shooting accuracy than those of the three comparison methods,which is more conducive to reflecting the effect of the control algorithm and facilitating test personnel to iterate their proposed structures and algorithms.;in addition,this study provides a knowledge base for further comprehensive studies in the future.展开更多
Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also ...Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also need to modulate the lateral force or trajectory (perpendicular to the vertical plane of fire direction). Therefore, the structure of control cabin of two-dimensional trajectory correction projectile (TDTCP) is more complicated than that of one-dimensional trajectory correction projectile (ODTCP). To simplify the structure of control cabin of TDTCP and reduce the cost, a scheme of adding a damping disk to the control cabin of ODTCP has been developed recently. The damping disk is unfolded at the right moment during its flight to change the ballistic drift of spin stabilized projectile. For this technical scheme of TDTCP, a fast and accurate impact point prediction method based on extended Kalman filter is presented. An approximate formula for predicting the ballistic drift and trajectory correction quantity is deduced. And the lateral correction capability for different fire angles and its influencing factors are analyzed. All the work is valuable for further research.展开更多
The two-dimensional trajectory correction needs to adjust not only the force in velocity direction,but also the lateral force or lateral trajectory (normal to the perpendicular plane of fire direction) . Therefore,its...The two-dimensional trajectory correction needs to adjust not only the force in velocity direction,but also the lateral force or lateral trajectory (normal to the perpendicular plane of fire direction) . Therefore,its structure of control cabin is more complicated than that of one-dimensional trajectory correction projectiles (ODTCP). In order to simplify the structure and reduce the cost,a scheme of adding a damping disc to the control cabin of ODTCP has been developed recently. The damping disc will unfold at the right moment during its flight to change the ballistic drift of rotary projectiles. Aimed at this technical scheme,a mathematical model of two-dimensional trajectory corrections was discussed according to the theory of exterior ballistics. An approximate formula for predicting the ballistic drift and trajectory correction was deduced. The capability of lateral trajectory correction and the flight stability of TDTCP were also analyzed. All the work is valuable for further research.展开更多
This paper presents an actuator used for the trajectory correction fuze,which is subject to high impact loadings during launch.A simulation method is carried out to obtain the peak-peak stress value of each component,...This paper presents an actuator used for the trajectory correction fuze,which is subject to high impact loadings during launch.A simulation method is carried out to obtain the peak-peak stress value of each component,from which the ball bearings are possible failures according to the results.Subsequently,three schemes against impact loadings,full-element deep groove ball bearing and integrated raceway,needle roller thrust bearing assembly,and gaskets are utilized for redesigning the actuator to effectively reduce the bearings’stress.However,multi-objectives optimization still needs to be conducted for the gaskets to decrease the stress value further to the yield stress.Four gasket’s structure parameters and three bearings’peak-peak stress are served as the four optimization variables and three objectives,respectively.Optimized Latin hypercube design is used for generating sample points,and Kriging model selected according to estimation result can establish the relationship between the variables and objectives,representing the simulation which is time-consuming.Accordingly,two optimization algorithms work out the Pareto solutions,from which the best solutions are selected,and verified by the simulation to determine the gaskets optimized structure parameters.It can be concluded that the simulation and optimization method based on these components is effective and efficient.展开更多
In conventional technical trajectory correction schemes,continuous attitude adjusting mechanisms, such as canards, are inferior in terms of response time and efficiency of executing instructions. Discontinuous attitud...In conventional technical trajectory correction schemes,continuous attitude adjusting mechanisms, such as canards, are inferior in terms of response time and efficiency of executing instructions. Discontinuous attitude adjusting mechanisms, such as the lateral pulse jet, have complex impact on the airflow layer of the projectile surface caused by the thrust vector jet flow. An improved two-dimensional trajectory correction mechanism is designed based on the principle of firing mass blocks by a tailor-made propellant. The mechanical properties of the thrust force(namely the correction force) is analyzed. The trajectory correction model is established to analyze the effects of correction starting moment and correction phase angle of a thrust force on the projectile's trajectory. According to the trajectory correction scheme, an improved genetic algorithm is employed to this work. The scheme is tested in the simulation. The results show that the correction scheme is effective to reduce target dispersion and increase the precision of the impact point.展开更多
A prototype of impulse thruster for radial thrust trajectory correction munitions is designed. It adopts semiconductor bridge (SCB) as ignition element,Ti/KClO4 (TK) as ignition charge and ammonium perchlorate/alumini...A prototype of impulse thruster for radial thrust trajectory correction munitions is designed. It adopts semiconductor bridge (SCB) as ignition element,Ti/KClO4 (TK) as ignition charge and ammonium perchlorate/aluminium (NA) or potassium picate/RDX (KR) as main charge. A thrust test device of impulse thruster is also designed. The output performance of the impulse thruster prototype is tested by the device. The tested results show that it can meet the safety requirements of 1A1W/5 min no-fire level and produce 0.2-0.6 N·s thrust impulse within 3ms of action time under certain test conditions; the corresponding ignition delay time is less than 0.5 ms.展开更多
自动行驶运输车可以有效提高设施大棚内的农产品运输效率和降低劳动成本,是农业自动化和智能化的必然发展方向。针对大棚内电动运输车的自动行驶问题,基于Visual Studio 2013开发环境,完成OpenCV 3.0视觉库的图像处理平台配置,设计一种...自动行驶运输车可以有效提高设施大棚内的农产品运输效率和降低劳动成本,是农业自动化和智能化的必然发展方向。针对大棚内电动运输车的自动行驶问题,基于Visual Studio 2013开发环境,完成OpenCV 3.0视觉库的图像处理平台配置,设计一种适用于设施大棚电动运输车的自动行驶系统,综合电动运输车作业环境和运输车结构特点,对车辆行驶道路图像处理方法和轨迹纠偏控制方法进行设计。搭建电动运输车自动行驶系统实车试验平台,对所设计的自动行驶系统进行试验验证。结果表明:在直线自动行驶试验中,车辆方向偏差角为3.61°,可以满足运输车的直线行驶作业要求;在自动行驶轨迹纠偏试验中,电动运输车在初始距离偏移100 mm、角度偏移27°的位置下,轨迹纠偏系统可以使电动运输车稳定行驶时的位姿维持在预设最大角度偏移5°和距离偏移17 mm之内。展开更多
基金the National Natural Science Foundation of China(Grant No.61973033)Preliminary Research of Equipment(Grant No.9090102010305)for funding the experiments。
文摘The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction fuse actuator.The impact point easily deviates from the target,and thus the correction result cannot be readily evaluated.However,the cost of shooting tests is considerably high to conduct many tests for data collection.To address this issue,this study proposes an aiming method for shooting tests based on small sample size.The proposed method uses the Bootstrap method to expand the test data;repeatedly iterates and corrects the position of the simulated theoretical impact points through an improved compatibility test method;and dynamically adjusts the weight of the prior distribution of simulation results based on Kullback-Leibler divergence,which to some extent avoids the real data being"submerged"by the simulation data and achieves the fusion Bayesian estimation of the dispersion center.The experimental results show that when the simulation accuracy is sufficiently high,the proposed method yields a smaller mean-square deviation in estimating the dispersion center and higher shooting accuracy than those of the three comparison methods,which is more conducive to reflecting the effect of the control algorithm and facilitating test personnel to iterate their proposed structures and algorithms.;in addition,this study provides a knowledge base for further comprehensive studies in the future.
文摘Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also need to modulate the lateral force or trajectory (perpendicular to the vertical plane of fire direction). Therefore, the structure of control cabin of two-dimensional trajectory correction projectile (TDTCP) is more complicated than that of one-dimensional trajectory correction projectile (ODTCP). To simplify the structure of control cabin of TDTCP and reduce the cost, a scheme of adding a damping disk to the control cabin of ODTCP has been developed recently. The damping disk is unfolded at the right moment during its flight to change the ballistic drift of spin stabilized projectile. For this technical scheme of TDTCP, a fast and accurate impact point prediction method based on extended Kalman filter is presented. An approximate formula for predicting the ballistic drift and trajectory correction quantity is deduced. And the lateral correction capability for different fire angles and its influencing factors are analyzed. All the work is valuable for further research.
文摘The two-dimensional trajectory correction needs to adjust not only the force in velocity direction,but also the lateral force or lateral trajectory (normal to the perpendicular plane of fire direction) . Therefore,its structure of control cabin is more complicated than that of one-dimensional trajectory correction projectiles (ODTCP). In order to simplify the structure and reduce the cost,a scheme of adding a damping disc to the control cabin of ODTCP has been developed recently. The damping disc will unfold at the right moment during its flight to change the ballistic drift of rotary projectiles. Aimed at this technical scheme,a mathematical model of two-dimensional trajectory corrections was discussed according to the theory of exterior ballistics. An approximate formula for predicting the ballistic drift and trajectory correction was deduced. The capability of lateral trajectory correction and the flight stability of TDTCP were also analyzed. All the work is valuable for further research.
基金The authors would like to acknowledge National Defense Pre-Research Foundation of China(Grant No.41419030102)to provide fund for conducting experiments.
文摘This paper presents an actuator used for the trajectory correction fuze,which is subject to high impact loadings during launch.A simulation method is carried out to obtain the peak-peak stress value of each component,from which the ball bearings are possible failures according to the results.Subsequently,three schemes against impact loadings,full-element deep groove ball bearing and integrated raceway,needle roller thrust bearing assembly,and gaskets are utilized for redesigning the actuator to effectively reduce the bearings’stress.However,multi-objectives optimization still needs to be conducted for the gaskets to decrease the stress value further to the yield stress.Four gasket’s structure parameters and three bearings’peak-peak stress are served as the four optimization variables and three objectives,respectively.Optimized Latin hypercube design is used for generating sample points,and Kriging model selected according to estimation result can establish the relationship between the variables and objectives,representing the simulation which is time-consuming.Accordingly,two optimization algorithms work out the Pareto solutions,from which the best solutions are selected,and verified by the simulation to determine the gaskets optimized structure parameters.It can be concluded that the simulation and optimization method based on these components is effective and efficient.
基金supported by the National Natural Science Foundation of China(11372142)
文摘In conventional technical trajectory correction schemes,continuous attitude adjusting mechanisms, such as canards, are inferior in terms of response time and efficiency of executing instructions. Discontinuous attitude adjusting mechanisms, such as the lateral pulse jet, have complex impact on the airflow layer of the projectile surface caused by the thrust vector jet flow. An improved two-dimensional trajectory correction mechanism is designed based on the principle of firing mass blocks by a tailor-made propellant. The mechanical properties of the thrust force(namely the correction force) is analyzed. The trajectory correction model is established to analyze the effects of correction starting moment and correction phase angle of a thrust force on the projectile's trajectory. According to the trajectory correction scheme, an improved genetic algorithm is employed to this work. The scheme is tested in the simulation. The results show that the correction scheme is effective to reduce target dispersion and increase the precision of the impact point.
基金the Ministerial Level Advanced Research Foundation (51305080302)
文摘A prototype of impulse thruster for radial thrust trajectory correction munitions is designed. It adopts semiconductor bridge (SCB) as ignition element,Ti/KClO4 (TK) as ignition charge and ammonium perchlorate/aluminium (NA) or potassium picate/RDX (KR) as main charge. A thrust test device of impulse thruster is also designed. The output performance of the impulse thruster prototype is tested by the device. The tested results show that it can meet the safety requirements of 1A1W/5 min no-fire level and produce 0.2-0.6 N·s thrust impulse within 3ms of action time under certain test conditions; the corresponding ignition delay time is less than 0.5 ms.