The main intent of this study is to investigate the accuracy of short-duration traffic counts conducted during winter months. The investigation is based on 11-year sample data collected using permanent traffic counter...The main intent of this study is to investigate the accuracy of short-duration traffic counts conducted during winter months. The investigation is based on 11-year sample data collected using permanent traffic counters at various locations in Alberta, Canada. Four types of road sites: commuter, regional commuter, rural long-distance, and recreational sites are studied. The sample data consti- tute six different durations of counts (12-, 24-, 48-, 72-, 96-h, and 1 week) taken during summer and winter months. The coefficient of variation (CV) is used as the relative measure of deviation for counts of different dura- tions to measure the accuracy of short-period traffic counts. The study results indicate that 48-h count seems to be the most cost-effective counting interval during both summer and winter months. It is also found that the lowest values of CV result for counts taken at commuter sites, and the highest values are observed for recreational sites. Frequent changes in temperature and other weather events cause significant variation in traffic volume, which results in an increase in CV values for counts taken during winter months. The application of an adjustment factor to remove the effect of cold and snow from short-period counts is also included in this study. Introduced adjustment factors can reduce the values of CV for all counts taken during winter months. The findings of this study can lead highway agencies to improve the cost-effectiveness of their short- period traffic counting programs.展开更多
The article intends to find a method to quantify traffic congestion's impacts on travelers to help transportation planners and policy decision makers well understand congestion situations. Three new congestion indica...The article intends to find a method to quantify traffic congestion's impacts on travelers to help transportation planners and policy decision makers well understand congestion situations. Three new congestion indicators, including transportation environment satisfaction (TES), travel time satisfaction (TTS), and traffic congestion frequency and feeling (TCFF), are defined to estimate urban traffic congestion based on travelers' feelings. Data of travelers' attitude about congestion and trip information were collected from a survey in Shanghai, China. Based on the survey data, we estimated the value of the three indi- cators. Then, the principal components analysis was used to derive a small number of linear combinations of a set of variables to estimate the whole congestion status. A linear regression model was used to find out the significant variables which impact respondents' feelings. Two ordered logit models were used to select significant variables of TES and TTS. Attitudinal factor variables were also used in these models. The results show that attitudinal factor variables and cluster category variables are as important as sociodemographic variables in the models. Using the three congestion indicators, the government can collect travelers' feeling about traffic congestion and estimate the transportation policy that might be applied to cope with traffic congestion.展开更多
Heterogeneous traffic conditions prevail in developing countries. Vehicles maintain weak lane discipline which increases lateral interactions of vehicles significantly. It is necessary to study these interactions in t...Heterogeneous traffic conditions prevail in developing countries. Vehicles maintain weak lane discipline which increases lateral interactions of vehicles significantly. It is necessary to study these interactions in the form of maintained lateral gaps for modeling this traffic scenario. This paper aims at determining lateral clearances maintained by different vehicle types while moving in a heterogeneous traffic stream during overtaking. These data were collected using an instrumented vehicle which runs as a part of the stream. Variation of obtained clearance with average speed of interacting vehicles is studied and modeled. Different instrumented vehicles of various types are developed using (1) ultrasonic sensors fixed on both sides of vehicle, which provide inter-vehicular lateral distance and relative speed; and (2) GPS device with cameras, which provides vehicle type and speed of interacting vehicles. They are driven on different roads in six cities of India, to measure lateral gaps maintained with different interacting vehicles at different speeds. Relationships between lateral gaps and speed are modeled as regression lines with positive slopes and beta-distributed residuals. Nature of these graphs (i.e., slopes, intercepts, residuals) are also evaluated and compared for different interacting vehicle-type pairs. It is observed that similar vehicle pairs maintain less lateral clearance than dissimilar vehicle pairs. If a vehicle interacts with two vehicles (one on each side) simultaneously, lateral clearance is reduced and safety of the vehicles is compromised. The obtained relationships can be used for simulating lateral clearance maintaining behavior of vehicles in heterogeneous traffic.展开更多
The complexity of the IH-635 Managed Lanes Project, located in Dallas County, Texas, posed several technical and constructive challenges, leading to the adoption of solutions different from the traditional. Two altern...The complexity of the IH-635 Managed Lanes Project, located in Dallas County, Texas, posed several technical and constructive challenges, leading to the adoption of solutions different from the traditional. Two alternative solutions for the pier cap on one of the bridge crossings over IH-35E in the IH-635 project were analyzed in this case study, a cast-in-place post-tensioned concrete cap and an innovative prefabricated steel-concrete com- posite cap. The approach was to use an estimation of direct costs for material and labor and consideration of con- struction time schedules. A supplementary numerical modeling confirmed that both alternatives behave elasti- cally under imposed loads. The direct cost of material and labor for the two alternatives were close. However, the composite alternative required 13 days less construction time, resulting in substantial cost savings from traffic closing in the very busy traffic corridor. Traffic closing costs were substantially higher than the direct costs, especially for the post-tensioned cap. The quantification of the benefits allows more confidence in the utilization of the composites caps, leading to faster completion of bridge projects and substantial economic savings.展开更多
文摘The main intent of this study is to investigate the accuracy of short-duration traffic counts conducted during winter months. The investigation is based on 11-year sample data collected using permanent traffic counters at various locations in Alberta, Canada. Four types of road sites: commuter, regional commuter, rural long-distance, and recreational sites are studied. The sample data consti- tute six different durations of counts (12-, 24-, 48-, 72-, 96-h, and 1 week) taken during summer and winter months. The coefficient of variation (CV) is used as the relative measure of deviation for counts of different dura- tions to measure the accuracy of short-period traffic counts. The study results indicate that 48-h count seems to be the most cost-effective counting interval during both summer and winter months. It is also found that the lowest values of CV result for counts taken at commuter sites, and the highest values are observed for recreational sites. Frequent changes in temperature and other weather events cause significant variation in traffic volume, which results in an increase in CV values for counts taken during winter months. The application of an adjustment factor to remove the effect of cold and snow from short-period counts is also included in this study. Introduced adjustment factors can reduce the values of CV for all counts taken during winter months. The findings of this study can lead highway agencies to improve the cost-effectiveness of their short- period traffic counting programs.
基金supported by the Key Natural Science Foundation of China:Urban Transportation Planning Theory and Methods under the Information Environment, Grant No. 50738004/E0807
文摘The article intends to find a method to quantify traffic congestion's impacts on travelers to help transportation planners and policy decision makers well understand congestion situations. Three new congestion indicators, including transportation environment satisfaction (TES), travel time satisfaction (TTS), and traffic congestion frequency and feeling (TCFF), are defined to estimate urban traffic congestion based on travelers' feelings. Data of travelers' attitude about congestion and trip information were collected from a survey in Shanghai, China. Based on the survey data, we estimated the value of the three indi- cators. Then, the principal components analysis was used to derive a small number of linear combinations of a set of variables to estimate the whole congestion status. A linear regression model was used to find out the significant variables which impact respondents' feelings. Two ordered logit models were used to select significant variables of TES and TTS. Attitudinal factor variables were also used in these models. The results show that attitudinal factor variables and cluster category variables are as important as sociodemographic variables in the models. Using the three congestion indicators, the government can collect travelers' feeling about traffic congestion and estimate the transportation policy that might be applied to cope with traffic congestion.
文摘Heterogeneous traffic conditions prevail in developing countries. Vehicles maintain weak lane discipline which increases lateral interactions of vehicles significantly. It is necessary to study these interactions in the form of maintained lateral gaps for modeling this traffic scenario. This paper aims at determining lateral clearances maintained by different vehicle types while moving in a heterogeneous traffic stream during overtaking. These data were collected using an instrumented vehicle which runs as a part of the stream. Variation of obtained clearance with average speed of interacting vehicles is studied and modeled. Different instrumented vehicles of various types are developed using (1) ultrasonic sensors fixed on both sides of vehicle, which provide inter-vehicular lateral distance and relative speed; and (2) GPS device with cameras, which provides vehicle type and speed of interacting vehicles. They are driven on different roads in six cities of India, to measure lateral gaps maintained with different interacting vehicles at different speeds. Relationships between lateral gaps and speed are modeled as regression lines with positive slopes and beta-distributed residuals. Nature of these graphs (i.e., slopes, intercepts, residuals) are also evaluated and compared for different interacting vehicle-type pairs. It is observed that similar vehicle pairs maintain less lateral clearance than dissimilar vehicle pairs. If a vehicle interacts with two vehicles (one on each side) simultaneously, lateral clearance is reduced and safety of the vehicles is compromised. The obtained relationships can be used for simulating lateral clearance maintaining behavior of vehicles in heterogeneous traffic.
基金herein for allowing the use of various data from the LBJ Project in the development of this paper
文摘The complexity of the IH-635 Managed Lanes Project, located in Dallas County, Texas, posed several technical and constructive challenges, leading to the adoption of solutions different from the traditional. Two alternative solutions for the pier cap on one of the bridge crossings over IH-35E in the IH-635 project were analyzed in this case study, a cast-in-place post-tensioned concrete cap and an innovative prefabricated steel-concrete com- posite cap. The approach was to use an estimation of direct costs for material and labor and consideration of con- struction time schedules. A supplementary numerical modeling confirmed that both alternatives behave elasti- cally under imposed loads. The direct cost of material and labor for the two alternatives were close. However, the composite alternative required 13 days less construction time, resulting in substantial cost savings from traffic closing in the very busy traffic corridor. Traffic closing costs were substantially higher than the direct costs, especially for the post-tensioned cap. The quantification of the benefits allows more confidence in the utilization of the composites caps, leading to faster completion of bridge projects and substantial economic savings.