期刊文献+
共找到217篇文章
< 1 2 11 >
每页显示 20 50 100
基于GA-PSO混合优化SVM的机载EHA故障诊断 被引量:3
1
作者 覃刚 葛益波 +1 位作者 姚叶明 周清和 《液压与气动》 北大核心 2024年第5期168-180,共13页
针对机载电静液作动器(Electro-Hydrostatic Actuator,EHA)的典型故障,详细分析了故障原理并在MATLAB/Simulink中搭建了仿真模型。为了高效准确识别故障类型,提出一种用遗传算法(Genetic Algorithm,GA)和粒子群算法(Particle Swarm Opti... 针对机载电静液作动器(Electro-Hydrostatic Actuator,EHA)的典型故障,详细分析了故障原理并在MATLAB/Simulink中搭建了仿真模型。为了高效准确识别故障类型,提出一种用遗传算法(Genetic Algorithm,GA)和粒子群算法(Particle Swarm Optimization,PSO)混合优化支持向量机(Support Vector Machine,SVM)的故障诊断算法。GA鲁棒性好且全局搜索能力强但收敛速度慢,PSO对样本规模不敏感且具有记忆功能但易陷入局部最优,故融合两种算法寻找SVM的最优参数。另外,为了解决传统SVM多分类方法“一对多”和“一对一”易出现不可分的问题,建立一种偏二叉树结构的SVM多分类模型。对于采集的原始数据高度重合的情况,引入时域特征统计量进一步提升模型的分类性能。实验结果表明,提出的混合优化算法寻优速度更快、所寻参数更佳,同时用该算法优化的SVM分类模型相比于其他5类常用的机器学习模型分类效果更好,故障识别正确率可达97.7%。 展开更多
关键词 机载EHA 遗传算法 粒子群算法 偏二叉树结构 多分类svm
在线阅读 下载PDF
基于One-class SVM的噪声图像分割方法 被引量:6
2
作者 尚方信 郭浩 +1 位作者 李钢 张玲 《计算机应用》 CSCD 北大核心 2019年第3期874-881,共8页
为解决现有无监督图像分割模型对强噪声环境鲁棒性差、无法适应复杂混合噪声的问题,提出了一种基于One-class SVM方法的改进后的噪声鲁棒图像分割模型。首先,基于One-class SVM构建一种数据离群程度检测机制;然后,将离群程度值引入能量... 为解决现有无监督图像分割模型对强噪声环境鲁棒性差、无法适应复杂混合噪声的问题,提出了一种基于One-class SVM方法的改进后的噪声鲁棒图像分割模型。首先,基于One-class SVM构建一种数据离群程度检测机制;然后,将离群程度值引入能量泛函,令分割模型可以在多种噪声强度下获得较为准确的图像信息,同时避免现有方法在强噪声环境下,降权机制失效的问题;最后,通过最小化能量函数,驱动分割轮廓向目标边缘演化。在噪声图像分割实验中,当选取不同类型和强度的噪声时,该模型均能得到较为理想的分割结果。在F_1-score评估标准下,该模型比基于局部相关熵的K-means(LCK)模型高0.2~0.3,在强噪声环境下具有更高的稳定性,且在分割收敛时间上仅略大于LCK模型0.1 s左右。实验结果表明,所提模型在未显著增加分割耗时的前提下,对于概率、极值及混合噪声均有着更强的鲁棒性,并且可以分割带有噪声的自然图像。 展开更多
关键词 图像分割 图像噪声 单类支持向量机 离群检测 能量项
在线阅读 下载PDF
基于节点选择优化的DAG-SVM多类别分类 被引量:9
3
作者 沈健 蒋芸 +2 位作者 邹丽 陈娜 胡学伟 《计算机工程》 CAS CSCD 北大核心 2015年第6期143-146,共4页
有向无环图支持向量机(DAG-SVM)对于N类别分类问题,会构造N×(N-1)/2个支持向量机分类器(为每2个类构造一个支持向量机),DAG-SVM可能出现由于节点选择不佳而导致整个分类器分类结果较差的情况。为此,提出一种改进的DAG-SVM。通过为... 有向无环图支持向量机(DAG-SVM)对于N类别分类问题,会构造N×(N-1)/2个支持向量机分类器(为每2个类构造一个支持向量机),DAG-SVM可能出现由于节点选择不佳而导致整个分类器分类结果较差的情况。为此,提出一种改进的DAG-SVM。通过为每一层建立备选节点集合进行节点选择,选取下层备选节点集合中训练分类精度最高的一个节点组合作为当前层节点的下层节点,从而优化DAG-SVM的拓扑结构。实验结果表明,与已有的DAG-SVM,1-vs-1SVM,1-vs-a SVM方法相比,该方法的分类精度较高。 展开更多
关键词 有向无环图支持向量机 分类器 多类别分类 节点选择优化 备选节点
在线阅读 下载PDF
基于RS与LS-SVM多分类法的故障诊断方法及其应用 被引量:10
4
作者 蒋少华 桂卫华 +1 位作者 阳春华 戴贤江 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第2期447-451,共5页
针对密闭鼓风炉熔炼过程工艺复杂、工况变化较大的特点,提出应用粗糙集(RS)和最小二乘支持向量机(LS-SVM)进行鼓风炉故障诊断的方法。该方法首先利用RS对炉子的故障样本进行知识约简,获得各故障类型的征兆最小条件属性作为特征向量,然后... 针对密闭鼓风炉熔炼过程工艺复杂、工况变化较大的特点,提出应用粗糙集(RS)和最小二乘支持向量机(LS-SVM)进行鼓风炉故障诊断的方法。该方法首先利用RS对炉子的故障样本进行知识约简,获得各故障类型的征兆最小条件属性作为特征向量,然后,输入到由多个最小二乘支持向量机构成的多故障分类器中进行故障识别和分类。研究结果表明:该方法具有较强的泛化能力,诊断准确率达到90%以上。 展开更多
关键词 粗糙集 最小二乘支持向量机 多类分类器 故障诊断
在线阅读 下载PDF
维语网页中n-gram模型结合类不平衡SVM的不良文本过滤方法 被引量:5
5
作者 如先姑力·阿布都热西提 亚森·艾则孜 郭文强 《计算机应用研究》 CSCD 北大核心 2019年第11期3410-3414,共5页
提出了一种结合n-gram统计模型和类不平衡支持向量机(SVM)分类器的维语文本过滤方法。首先,将网页文本进行预处理操作,通过n-gram统计模型来初步提取词干;然后,对词干进行语义分析,将具有相似含义的词干聚合为一类,以此降低词干维度;最... 提出了一种结合n-gram统计模型和类不平衡支持向量机(SVM)分类器的维语文本过滤方法。首先,将网页文本进行预处理操作,通过n-gram统计模型来初步提取词干;然后,对词干进行语义分析,将具有相似含义的词干聚合为一类,以此降低词干维度;最后,在传统SVM中引入一个控制超平面之间距离的参数,构建一种类不平衡SVM,使其能够很好地分类具有非线性不可分和不平衡性的维吾尔语文本。实验结果表明,该方法能够准确分类出不良文本,且具有较短的分类时间。 展开更多
关键词 维吾尔语网页 不良文本过滤 n-gram词干提取 类不平衡svm
在线阅读 下载PDF
基于AAM模型和RS-SVM的人脸识别研究 被引量:5
6
作者 王李冬 王玉槐 《计算机工程与应用》 CSCD 北大核心 2009年第22期140-143,共4页
提出了一种基于AAM模型和RS-SVM的人脸识别算法。首先,使用一种基于统计学定位的图像定位方法—主动外观模型(AAM),将其应用到人脸特征定位。为了从所有提取的特征中选择出与人脸识别相关的、必要的特征,使用了粗糙集理论(RoughSet)的... 提出了一种基于AAM模型和RS-SVM的人脸识别算法。首先,使用一种基于统计学定位的图像定位方法—主动外观模型(AAM),将其应用到人脸特征定位。为了从所有提取的特征中选择出与人脸识别相关的、必要的特征,使用了粗糙集理论(RoughSet)的属性约简算法进行特征选择,有效降低特征维数。然后用支持向量机(SVM)进行分类。实验证明,该方法在不影响识别率的情况下,可以有效降低SVM的运算复杂度。 展开更多
关键词 人脸识别 主动外观模型 粗糙集理论 支持向量机 粗糙集-支持向量机(RS—svm)
在线阅读 下载PDF
基于OC-SVM的大型数据集分类方法 被引量:4
7
作者 张瑜 罗可 《计算机工程与应用》 CSCD 北大核心 2011年第4期131-133,共3页
支持向量机是最有效的分类技术之一,具有很高的分类精度和良好的泛化能力,但其应用于大型数据集时的训练过程还是非常复杂。对此提出了一种基于单类支持向量机的分类方法。采用随机选择算法来约简训练集,以达到提高训练速度的目的;同时... 支持向量机是最有效的分类技术之一,具有很高的分类精度和良好的泛化能力,但其应用于大型数据集时的训练过程还是非常复杂。对此提出了一种基于单类支持向量机的分类方法。采用随机选择算法来约简训练集,以达到提高训练速度的目的;同时,通过恢复超球体交集中样本在原始数据中的邻域来保证支持向量机的分类精度。实验证明,该方法能在较大程度上减小计算复杂度,从而提高大型数据集中的训练速度。 展开更多
关键词 单类支持向量机 随机选择 支持向量机分类 大型数据集
在线阅读 下载PDF
HSMC-SVM的二次逼近快速训练算法 被引量:2
8
作者 徐图 罗瑜 何大可 《电子与信息学报》 EI CSCD 北大核心 2008年第11期2746-2749,共4页
HSMC-SVM是一种直接型高速多类支持向量机,适合用于类别较多的分类场合,但由于SMO算法采用经验方法选择工作集,使得在用SMO算法训练HSMC-SVM时,收敛速度较慢。为提高HSMC-SVM的收敛速度,该文提出用基于二次逼近的可行方向法来训练HSMC-S... HSMC-SVM是一种直接型高速多类支持向量机,适合用于类别较多的分类场合,但由于SMO算法采用经验方法选择工作集,使得在用SMO算法训练HSMC-SVM时,收敛速度较慢。为提高HSMC-SVM的收敛速度,该文提出用基于二次逼近的可行方向法来训练HSMC-SVM,并使用了样本缩减策略。实验表明,这种方法可以有效提高HSMC-SVM的收敛速度,其收敛速度已经超过了基于libsvm的组合多类支持向量机,完全可以用于分类类别多、样本数量大的分类场合。 展开更多
关键词 超球体多类支持向量机 SMO训练算法 工作集选择:二次逼近
在线阅读 下载PDF
基于贝叶斯网络的Fuzzy-SVM路基震害预测模型 被引量:1
9
作者 刘阳 张建经 +2 位作者 罗宏森 于海莹 向波 《中国安全科学学报》 CAS CSCD 北大核心 2021年第11期171-178,共8页
为解决现有路基震害预测方法主观性强且无法考虑非线性特征的问题,以贝叶斯网络(BN)为框架,将工程经验与历史路基震害样本融合,改进网络参数求解方法,建立一种基于BN的模糊(Fuzzy)-支持向量机(SVM)路基震害预测模型。利用Fuzzy理论求解B... 为解决现有路基震害预测方法主观性强且无法考虑非线性特征的问题,以贝叶斯网络(BN)为框架,将工程经验与历史路基震害样本融合,改进网络参数求解方法,建立一种基于BN的模糊(Fuzzy)-支持向量机(SVM)路基震害预测模型。利用Fuzzy理论求解BN参数的先验概率,同时利用SVM求解BN参数的实际样本潜在概率;基于贝叶斯原理,将先验概率与实际样本潜在概率融合,得到既满足震害工程经验又体现历史震害样本中非线性特性的预测模型。结果表明:将提出的预测模型应用于汶川地震影响区的42个路基隐患点,预测准确率为80.95%。该模型在小样本情况下较传统机器学习方法(以SVM为代表)精度更高;并且,该模型在路基属性不完整的情况下也能有效预测震害等级。 展开更多
关键词 贝叶斯网络(BN) 路基震害 预测模型 模糊(Fuzzy)-支持向量机(svm) 先验知识
在线阅读 下载PDF
基于OCSVM-CPSO的自适应故障诊断 被引量:1
10
作者 钟清流 蔡自兴 《计算机工程与应用》 CSCD 北大核心 2007年第8期18-20,31,共4页
提出了一种基于OCSVM-CPSO自适应故障诊断模型,它用OCSVM作为基本检测模块,而用CPSO作为最优参数的搜索模块.当在线运行的检测准确率低于某确定的阈值时,启动CPSO搜索新的参数。而准确率达标时,用新参数继续后续检测过程。实验表明:此... 提出了一种基于OCSVM-CPSO自适应故障诊断模型,它用OCSVM作为基本检测模块,而用CPSO作为最优参数的搜索模块.当在线运行的检测准确率低于某确定的阈值时,启动CPSO搜索新的参数。而准确率达标时,用新参数继续后续检测过程。实验表明:此方法能够有效地实现高准确率在线检测任务。 展开更多
关键词 一类支持向量机 混沌粒子群优化 自适应 故障诊断
在线阅读 下载PDF
基于THz-TDS技术与改进IPSO-SVM模型的小米品质识别 被引量:2
11
作者 白雪 李明利 徐雷钧 《江苏农业科学》 2018年第21期254-258,267,共6页
为实现小米品质快速、精确的鉴别分析,探索了一种基于THz技术结合化学计量学方法的小米品质识别的新方法。采用THz-TDS技术测试了正常、虫蛀和霉变小米样品,将0~1. 6 THz频段的吸收系数与模式识别算法结合实现其品质鉴别分析。结果表明... 为实现小米品质快速、精确的鉴别分析,探索了一种基于THz技术结合化学计量学方法的小米品质识别的新方法。采用THz-TDS技术测试了正常、虫蛀和霉变小米样品,将0~1. 6 THz频段的吸收系数与模式识别算法结合实现其品质鉴别分析。结果表明,不同品质小米的吸收系数和折射率具有差异。利用直接正交信号校正+标准正态交换+S-G卷积平滑(DSOC+SNV+S-G)预处理和竞争性自适应重加权+连续投影法(CARS+SPA)优选的16个特征波长所建偏最小二乘法-判别分析(PLS-DA)、粒子群-支持向量机(PSO-SVM)模型测试集准确率分别为93. 33%、95. 55%。为解决粒子群(PSO)寻优过程易陷入局部极值的问题和提升模型性能,对此提出了一种新型的粒子群(IPSO)优化支持向量机(SVM)的方法。通过增加调制参数和更新机制进行参数寻优,利用基于径向基内核(RBF)的支持向量机(SVM)和10折交叉验证的方法建立识别模型,寻优得到核函数参数g=15. 459 3、惩罚参数c=0. 813 3所建IPSO-SVM的性能优于其他模型,回代训练集和测试集的准确率达到100. 00%、97. 78%。可见,THz技术结合IPSO-SVM能较准确地鉴别小米品质,为小米品质的识别探索出一种新方法。 展开更多
关键词 太赫兹时域光谱(THz-TDS)技术 小米 品质 吸收系数 偏最小二乘法-判别分析(PLS-DA) 类子群(PSO)-支持向量机(svm)
在线阅读 下载PDF
基于μσ-DWC特征和树结构M-SVM的多维时间序列分类
12
作者 谭海龙 刘康玲 +2 位作者 金鑫 石向荣 梁军 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第6期1061-1069,1100,共10页
为了实现多维时间序列的分类,提出基于统计量-小波系数(μσ-DWC)的序列特征提取方法和新型树结构多分类支持向量机M-SVM模型.分类算法的实现过程如下:利用该特征提取方法将原始多维时间序列映射到特征空间,获得原始序列的压缩表示,即... 为了实现多维时间序列的分类,提出基于统计量-小波系数(μσ-DWC)的序列特征提取方法和新型树结构多分类支持向量机M-SVM模型.分类算法的实现过程如下:利用该特征提取方法将原始多维时间序列映射到特征空间,获得原始序列的压缩表示,即特征向量;得到训练集的特征向量表示之后,训练和构建树结构M-SVM模型;提取未知序列的特征向量并输入已训练完成的树结构M-SVM模型,得到未知序列的类标号,完成分类.实验结果表明:该算法比传统的分类方法具有更高的分类准确率和预测速度,同时可以保证较理想的训练速度. 展开更多
关键词 多维时间序列 特征提取 小波系数 多分类支持向量机(M-svm) 树结构
在线阅读 下载PDF
改进决策的带异常样本1-SVM算法及应用
13
作者 王涛 李艾华 +2 位作者 王旭平 蔡艳平 张敏龙 《振动与冲击》 EI CSCD 北大核心 2015年第10期84-87,共4页
针对正常类样本多、异常类样本缺乏问题,基于异常样本加入能提高分类能力及分类精度考虑,提出改进决策的带异常样本1-SVM算法,并用于机械设备异常状态检测。用两类样本同时训练1-SVM模型可改善1-SVM算法对异常样本的描述能力;通过调整... 针对正常类样本多、异常类样本缺乏问题,基于异常样本加入能提高分类能力及分类精度考虑,提出改进决策的带异常样本1-SVM算法,并用于机械设备异常状态检测。用两类样本同时训练1-SVM模型可改善1-SVM算法对异常样本的描述能力;通过调整决策边界提高1-SVM算法的分类精度。柴油机气阀机构故障检测实验结果表明,该算法对正常类及故障类样本的识别率均高于标准1-SVM算法及带异常样本的1-SVM算法。 展开更多
关键词 一类支持向量机 异常样本 改进决策 故障检测
在线阅读 下载PDF
基于类间可分性DAG-SVM的文本分类 被引量:4
14
作者 黄振龙 郑骏 胡文心 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第3期209-218,共10页
本方法采用了以类间分布和类间中心距离作为依据,对有向无环图结构进行调整,以解决传统的DAG-SVM多分类结构固定、单个节点位置随意引起的"误差累积"严重的缺陷.实验表明,该改进后的DAG-SVM文本分类方法,对文本分类准确率有... 本方法采用了以类间分布和类间中心距离作为依据,对有向无环图结构进行调整,以解决传统的DAG-SVM多分类结构固定、单个节点位置随意引起的"误差累积"严重的缺陷.实验表明,该改进后的DAG-SVM文本分类方法,对文本分类准确率有一定的提高. 展开更多
关键词 文本分类 支持向量机 DAG-svm 类间可分性
在线阅读 下载PDF
融合Lévy飞行和精英反向学习的WOA-SVM多分类算法 被引量:20
15
作者 何小龙 张刚 +1 位作者 陈跃华 杨尚志 《计算机应用研究》 CSCD 北大核心 2021年第12期3640-3645,共6页
元启发算法-SVM是多分类评价模型的典型架构,在多分类综合决策判定中具有重要的理论与实践意义,为此提出了一种融合Lévy飞行和精英反向学习的鲸鱼优化算法(Lévy flight and elite opposition-based whale optimization algori... 元启发算法-SVM是多分类评价模型的典型架构,在多分类综合决策判定中具有重要的理论与实践意义,为此提出了一种融合Lévy飞行和精英反向学习的鲸鱼优化算法(Lévy flight and elite opposition-based whale optimization algorithm,LFEO-BWOA)-SVM多分类评价算法。利用Lévy飞行策略替代螺旋轨迹策略更新位置信息,有效克服了鲸鱼优化算法易陷入局部寻优的不足;引入精英反向学习机制增加种群多样性,提高了鲸鱼优化算法全局寻优的能力。实验仿真结果表明,LFEO-BWOA-SVM算法在分类准确率上比传统SVM、BP神经网络分别提高17.84%和4.51%,准确率为98.73%,在训练时间上比标准WOA-SVM和PSO-SVM分别缩短了9.34%和84.94%。实验结果证明,LFEO-BWOA-SVM算法的寻优能力和收敛速度均有明显提升,准确率和快速性良好。 展开更多
关键词 多分类 支持向量机 鲸鱼优化 Lévy飞行 精英反向学习
在线阅读 下载PDF
基于特征贡献度加权高斯核函数的粗糙one-class支持向量机 被引量:2
16
作者 田浩兵 朱嘉钢 陆晓 《计算机科学》 CSCD 北大核心 2015年第6期239-242,246,共5页
粗糙one-class支持向量机(ROCSVM)是一种一类支持向量机,它通过核函数映射,定义上近似超平面和下近似超平面,使得训练样本能根据在粗糙间隔中的位置,自适应地对决策超平面产生影响。由于ROCSVM训练集只有正类样本,因此充分挖掘和利用训... 粗糙one-class支持向量机(ROCSVM)是一种一类支持向量机,它通过核函数映射,定义上近似超平面和下近似超平面,使得训练样本能根据在粗糙间隔中的位置,自适应地对决策超平面产生影响。由于ROCSVM训练集只有正类样本,因此充分挖掘和利用训练样本的分类特征对于提高ROCSVM的分类性能有重要意义。为此,提出了一种基于训练样本分类特征贡献度的加权高斯核函数(λ-RBF):先对训练样本做主成分分析(PCA)得到按特征值排序的向量集,以此向量集构造核函数,使得特征值较大的维度在核函数中起较大的作用。在UCI标准数据集和仿真数据上的实验结果表明:与一般RBF的ROCSVM相比,基于λ-RBF的ROCSVM有着更好的泛化性和更高的识别率。 展开更多
关键词 粗糙集 一类支持向量机 加权核函数 主成分分析 超平面 过拟合
在线阅读 下载PDF
基于PCA和M-SVMs的化学物质生态危害预测应用研究 被引量:2
17
作者 杨雪梅 李书琴 杨会君 《环境科学与技术》 CAS CSCD 北大核心 2012年第10期195-200,共6页
为防止新化学物质投入市场时对生态环境造成危害,需对其生态危害程度进行评价。现有评价方法把各指标对生态危害的贡献看成是等效的,不能客观反映事实,且评价指标较多,指标之间具有较强的相关性,会降低预测精确度,为了解决该问题,文章... 为防止新化学物质投入市场时对生态环境造成危害,需对其生态危害程度进行评价。现有评价方法把各指标对生态危害的贡献看成是等效的,不能客观反映事实,且评价指标较多,指标之间具有较强的相关性,会降低预测精确度,为了解决该问题,文章将主成分分析和支持向量机相结合。首先运用主成分分析进行特征提取,降低数据维数,获取数据的主要信息;然后将二值分类支持向量机扩展到多类支持向量机,利用多类支持向量机建立化学物质生态危害预测模型,采用10折交叉验证法对模型进行检验,得到平均正确率达到89.24%。并与未进行主成分分析的支持向量机分类模型进行了比较,实验结果表明该方法具有更好的预测精度,值得推广。 展开更多
关键词 化学物质 生态危害 主成分分析 多类支持向量机 分类模型
在线阅读 下载PDF
基于Bagging算法构造强分类器的one class SVM导线舞动预测应用 被引量:8
18
作者 程永锋 汉京善 +2 位作者 刘彬 李鹏 姬昆鹏 《振动与冲击》 EI CSCD 北大核心 2020年第9期152-158,共7页
考虑到传统物理分析方法无法解决导线舞动的预测问题,综合运用机器学习算法,对已有的舞动历史数据进行筛选和预处理,并挖掘有效信息,利用one class SVM算法解决舞动数据中负样本缺失问题,采用集成学习算法中Bagging算法建立分类器学习方... 考虑到传统物理分析方法无法解决导线舞动的预测问题,综合运用机器学习算法,对已有的舞动历史数据进行筛选和预处理,并挖掘有效信息,利用one class SVM算法解决舞动数据中负样本缺失问题,采用集成学习算法中Bagging算法建立分类器学习方法,实现了数据的随机抽样,分成不同组数据集进行相互独立的训练,避免对舞动数据过拟合,提升机器学习算法的抗噪声能力以及泛化能力,采用k折交叉验证算法进行模型的验证,并利用F1-score描述导线舞动预警模型的性能,验证了该方法在舞动预测方面的有效性。 展开更多
关键词 导线舞动 机器学习 ONE class svm 集成学习 BAGGING算法 F1-score
在线阅读 下载PDF
多超球面OC-SVM算法在隐秘图像检测中的应用 被引量:1
19
作者 唐玉华 杨晓元 +1 位作者 张敏情 韩鹏 《计算机应用》 CSCD 北大核心 2006年第12期2887-2889,共3页
针对二类支持向量机分类器在图像密写分析应用中训练步骤复杂与推广性弱的缺点,把一类支持向量机(OC-SVM)引入算法,提出一种基于核的多超球面OC-SVM算法。算法利用核空间中样本特征差异突出的特性,首先对样本在核空间进行K-均值聚类,然... 针对二类支持向量机分类器在图像密写分析应用中训练步骤复杂与推广性弱的缺点,把一类支持向量机(OC-SVM)引入算法,提出一种基于核的多超球面OC-SVM算法。算法利用核空间中样本特征差异突出的特性,首先对样本在核空间进行K-均值聚类,然后使用OC-SVMs对各子类训练建立多超球面分类模型,实现分类判决。实验结果表明,算法有效地实现了对隐秘图像的盲检测,提高了检测精度。 展开更多
关键词 盲检测 图像密写分析 核K-均值聚类 多超球面 一类支持向量机
在线阅读 下载PDF
基于类内散度的粗糙one-class支持向量机
20
作者 张彬 朱嘉钢 《计算机科学》 CSCD 北大核心 2016年第12期135-138,172,共5页
粗糙one-class支持向量机(ROC-SVM)在粗糙集理论基础上通过构建粗糙上超平面和下超平面来处理过拟合问题,但是在寻找最优分类超平面的过程中,忽略了训练样本类内结构这一非常重要的先验知识。因此,提出了一种基于类内散度的粗糙one-clas... 粗糙one-class支持向量机(ROC-SVM)在粗糙集理论基础上通过构建粗糙上超平面和下超平面来处理过拟合问题,但是在寻找最优分类超平面的过程中,忽略了训练样本类内结构这一非常重要的先验知识。因此,提出了一种基于类内散度的粗糙one-class支持向量机(WSROC-SVM),该方法通过最小化训练样本类内散度来优化训练样本类内结构,一方面使训练样本在高维特征空间中与坐标原点的间隔尽可能大,另一方面使得训练样本在粗糙上超平面尽可能紧密。在合成数据集和UCI数据集上的实验结果表明,较原始算法,该方法有着更高的识别率和更好的泛化性能,在解决实际分类问题上更具优越性。 展开更多
关键词 粗糙集 一类支持向量机 类内散度 过拟合
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部