Flatness pattern recognition is the key of the flatness control. The accuracy of the present flatness pattern recognition is limited and the shape defects cannot be reflected intuitively. In order to improve it, a nov...Flatness pattern recognition is the key of the flatness control. The accuracy of the present flatness pattern recognition is limited and the shape defects cannot be reflected intuitively. In order to improve it, a novel method via T-S cloud inference network optimized by genetic algorithm(GA) is proposed. T-S cloud inference network is constructed with T-S fuzzy neural network and the cloud model. So, the rapid of fuzzy logic and the uncertainty of cloud model for processing data are both taken into account. What's more, GA possesses good parallel design structure and global optimization characteristics. Compared with the simulation recognition results of traditional BP Algorithm, GA is more accurate and effective. Moreover, virtual reality technology is introduced into the field of shape control by Lab VIEW, MATLAB mixed programming. And virtual flatness pattern recognition interface is designed.Therefore, the data of engineering analysis and the actual model are combined with each other, and the shape defects could be seen more lively and intuitively.展开更多
Based on salient visual regions for mobile robot navigation in unknown environments, a new place recognition system was presented. The system uses monocular camera to acquire omni-directional images of the environment...Based on salient visual regions for mobile robot navigation in unknown environments, a new place recognition system was presented. The system uses monocular camera to acquire omni-directional images of the environment where the robot locates. Salient local regions are detected from these images using center-surround difference method, which computes opponencies of color and texture among multi-scale image spaces. And then they are organized using hidden Markov model (HMM) to form the vertex of topological map. So localization, that is place recognition in our system, can be converted to evaluation of HMM. Experimental results show that the saliency detection is immune to the changes of scale, 2D rotation and viewpoint etc. The created topological map has smaller size and a higher ratio of recognition is obtained.展开更多
Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is ba...Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is based on the combination of non-negative sparse coding (NNSC) and linear discrimination optimization, to recognize targets in ISAR images. This method implements NNSC on the matrix constituted by the intensities of pixels in ISAR images for training, to obtain non-negative sparse bases which characterize sparse distribution of strong scattering centers. Then this paper chooses sparse bases via optimization criteria and calculates the corresponding non-negative sparse codes of both training and test images as the feature vectors, which are input into k neighbors classifier to realize recognition finally. The feasibility and robustness of the proposed method are proved by comparing with the template matching, principle component analysis (PCA) and non-negative matrix factorization (NMF) via simulations.展开更多
基金Project(LJRC013)supported by the University Innovation Team of Hebei Province Leading Talent Cultivation,China
文摘Flatness pattern recognition is the key of the flatness control. The accuracy of the present flatness pattern recognition is limited and the shape defects cannot be reflected intuitively. In order to improve it, a novel method via T-S cloud inference network optimized by genetic algorithm(GA) is proposed. T-S cloud inference network is constructed with T-S fuzzy neural network and the cloud model. So, the rapid of fuzzy logic and the uncertainty of cloud model for processing data are both taken into account. What's more, GA possesses good parallel design structure and global optimization characteristics. Compared with the simulation recognition results of traditional BP Algorithm, GA is more accurate and effective. Moreover, virtual reality technology is introduced into the field of shape control by Lab VIEW, MATLAB mixed programming. And virtual flatness pattern recognition interface is designed.Therefore, the data of engineering analysis and the actual model are combined with each other, and the shape defects could be seen more lively and intuitively.
基金Projects(60234030 ,60404021) supported by the National Natural Science Foundation of China
文摘Based on salient visual regions for mobile robot navigation in unknown environments, a new place recognition system was presented. The system uses monocular camera to acquire omni-directional images of the environment where the robot locates. Salient local regions are detected from these images using center-surround difference method, which computes opponencies of color and texture among multi-scale image spaces. And then they are organized using hidden Markov model (HMM) to form the vertex of topological map. So localization, that is place recognition in our system, can be converted to evaluation of HMM. Experimental results show that the saliency detection is immune to the changes of scale, 2D rotation and viewpoint etc. The created topological map has smaller size and a higher ratio of recognition is obtained.
基金supported by the Prominent Youth Fund of the National Natural Science Foundation of China (61025006)
文摘Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is based on the combination of non-negative sparse coding (NNSC) and linear discrimination optimization, to recognize targets in ISAR images. This method implements NNSC on the matrix constituted by the intensities of pixels in ISAR images for training, to obtain non-negative sparse bases which characterize sparse distribution of strong scattering centers. Then this paper chooses sparse bases via optimization criteria and calculates the corresponding non-negative sparse codes of both training and test images as the feature vectors, which are input into k neighbors classifier to realize recognition finally. The feasibility and robustness of the proposed method are proved by comparing with the template matching, principle component analysis (PCA) and non-negative matrix factorization (NMF) via simulations.