Testing-effort(TE) and imperfect debugging(ID) in the reliability modeling process may further improve the fitting and prediction results of software reliability growth models(SRGMs). For describing the S-shaped...Testing-effort(TE) and imperfect debugging(ID) in the reliability modeling process may further improve the fitting and prediction results of software reliability growth models(SRGMs). For describing the S-shaped varying trend of TE increasing rate more accurately, first, two S-shaped testing-effort functions(TEFs), i.e.,delayed S-shaped TEF(DS-TEF) and inflected S-shaped TEF(IS-TEF), are proposed. Then these two TEFs are incorporated into various types(exponential-type, delayed S-shaped and inflected S-shaped) of non-homogeneous Poisson process(NHPP)SRGMs with two forms of ID respectively for obtaining a series of new NHPP SRGMs which consider S-shaped TEFs as well as ID. Finally these new SRGMs and several comparison NHPP SRGMs are applied into four real failure data-sets respectively for investigating the fitting and prediction power of these new SRGMs.The experimental results show that:(i) the proposed IS-TEF is more suitable and flexible for describing the consumption of TE than the previous TEFs;(ii) incorporating TEFs into the inflected S-shaped NHPP SRGM may be more effective and appropriate compared with the exponential-type and the delayed S-shaped NHPP SRGMs;(iii) the inflected S-shaped NHPP SRGM considering both IS-TEF and ID yields the most accurate fitting and prediction results than the other comparison NHPP SRGMs.展开更多
The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and wi...The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.展开更多
Reagents are optimized for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in zinc sulfate solution, which contains an extremely large excess of Zn^(2+). First, the reagents and their d...Reagents are optimized for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in zinc sulfate solution, which contains an extremely large excess of Zn^(2+). First, the reagents and their doses for the experiment are selected according to the characteristics of the zinc sulfate solution. Then, the reagent doses are optimized by analyzing the influence of reagent dose on the polarographic parameters(i.e. half-wave potential E_(1/2) and limiting diffusion current I_p). Finally, the optimization results are verified by simultaneously determining trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in the presence of an extremely large excess of Zn^(2+). The determination results indicate that the optimized reagents exhibit wide linearity, low detection limits, high accuracy and good precision for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in the presence of an extremely large excess of Zn^(2+).展开更多
An on-line forecasting model based on self-tuning support vectors regression for zinc output was put forward to maximize zinc output by adjusting operational parameters in the process of imperial smelting furnace. In ...An on-line forecasting model based on self-tuning support vectors regression for zinc output was put forward to maximize zinc output by adjusting operational parameters in the process of imperial smelting furnace. In this model, the mathematical model of support vector regression was converted into the same format as support vector machine for classification. Then a simplified sequential minimal optimization for classification was applied to train the regression coefficient vector α- α* and threshold b. Sequentially penalty parameter C was tuned dynamically through forecasting result during the training process. Finally, an on-line forecasting algorithm for zinc output was proposed. The simulation result shows that in spite of a relatively small industrial data set, the effective error is less than 10% with a remarkable performance of real time. The model was applied to the optimization operation and fault diagnosis system for imperial smelting furnace.展开更多
基金supported by the Pre-research Foundation of CPLA General Equipment Department
文摘Testing-effort(TE) and imperfect debugging(ID) in the reliability modeling process may further improve the fitting and prediction results of software reliability growth models(SRGMs). For describing the S-shaped varying trend of TE increasing rate more accurately, first, two S-shaped testing-effort functions(TEFs), i.e.,delayed S-shaped TEF(DS-TEF) and inflected S-shaped TEF(IS-TEF), are proposed. Then these two TEFs are incorporated into various types(exponential-type, delayed S-shaped and inflected S-shaped) of non-homogeneous Poisson process(NHPP)SRGMs with two forms of ID respectively for obtaining a series of new NHPP SRGMs which consider S-shaped TEFs as well as ID. Finally these new SRGMs and several comparison NHPP SRGMs are applied into four real failure data-sets respectively for investigating the fitting and prediction power of these new SRGMs.The experimental results show that:(i) the proposed IS-TEF is more suitable and flexible for describing the consumption of TE than the previous TEFs;(ii) incorporating TEFs into the inflected S-shaped NHPP SRGM may be more effective and appropriate compared with the exponential-type and the delayed S-shaped NHPP SRGMs;(iii) the inflected S-shaped NHPP SRGM considering both IS-TEF and ID yields the most accurate fitting and prediction results than the other comparison NHPP SRGMs.
基金Project(51090385) supported by the Major Program of National Natural Science Foundation of ChinaProject(2011IB001) supported by Yunnan Provincial Science and Technology Program,China+1 种基金Project(2012DFA70570) supported by the International Science & Technology Cooperation Program of ChinaProject(2011IA004) supported by the Yunnan Provincial International Cooperative Program,China
文摘The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.
基金Projects(61533021,61321003,61273185)supported by the National Natural Science Foundation of ChinaProject(2015CX007)supported by the Innovation-driven Plan in Central South University,ChinaProject(13JJ8003)supported by the Joint Fund of Hunan Provincial Natural Science Foundation of China
文摘Reagents are optimized for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in zinc sulfate solution, which contains an extremely large excess of Zn^(2+). First, the reagents and their doses for the experiment are selected according to the characteristics of the zinc sulfate solution. Then, the reagent doses are optimized by analyzing the influence of reagent dose on the polarographic parameters(i.e. half-wave potential E_(1/2) and limiting diffusion current I_p). Finally, the optimization results are verified by simultaneously determining trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in the presence of an extremely large excess of Zn^(2+). The determination results indicate that the optimized reagents exhibit wide linearity, low detection limits, high accuracy and good precision for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in the presence of an extremely large excess of Zn^(2+).
文摘An on-line forecasting model based on self-tuning support vectors regression for zinc output was put forward to maximize zinc output by adjusting operational parameters in the process of imperial smelting furnace. In this model, the mathematical model of support vector regression was converted into the same format as support vector machine for classification. Then a simplified sequential minimal optimization for classification was applied to train the regression coefficient vector α- α* and threshold b. Sequentially penalty parameter C was tuned dynamically through forecasting result during the training process. Finally, an on-line forecasting algorithm for zinc output was proposed. The simulation result shows that in spite of a relatively small industrial data set, the effective error is less than 10% with a remarkable performance of real time. The model was applied to the optimization operation and fault diagnosis system for imperial smelting furnace.