期刊文献+
共找到1,802篇文章
< 1 2 91 >
每页显示 20 50 100
Improving autoencoder-based unsupervised damage detection in uncontrolled structural health monitoring under noisy conditions 被引量:2
1
作者 Yang Kang Wang Linyuan +4 位作者 Gao Chao Chen Mozhi Tian Zhihui Zhou Dunzhi Liu Yang 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第6期91-100,共10页
Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enh... Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enhance the performance of guided wave damage detection in noisy environments is crucial.This paper introduces a local temporal principal component analysis(PCA)reconstruction approach for denoising guided waves prior to implementing unsupervised damage detection,achieved through novel autoencoder-based reconstruction.Experimental results demonstrate that the proposed denoising method significantly enhances damage detection performance when guided waves are contaminated by noise,with SNR values ranging from 10 to-5 dB.Following the implementation of the proposed denoising approach,the AUC score can elevate from 0.65 to 0.96 when dealing with guided waves corrputed by noise at a level of-5 dB.Additionally,the paper provides guidance on selecting the appropriate number of components used in the denoising PCA reconstruction,aiding in the optimization of the damage detection in noisy conditions. 展开更多
关键词 structural health monitoring guided waves principal component analysis deep learning DENOISING dynamic environmental condition
在线阅读 下载PDF
Condition Monitoring and Fault Diagnosis Based on Rough Set Theory 被引量:1
2
作者 Li Xiong Li Shengli Xu Zongchang 《仪器仪表学报》 EI CAS CSCD 北大核心 2005年第z1期781-783,共3页
In order to raise the efficiency,automatization and intelligentization of condition monitoring and fault diagnosis for complex equipment systems,rough set theory is used to the field. A feature reduction algorithm bas... In order to raise the efficiency,automatization and intelligentization of condition monitoring and fault diagnosis for complex equipment systems,rough set theory is used to the field. A feature reduction algorithm based on rough set theory is adopted to extract condition information in monitoring and diagnosis for an engine,so that the technology condition monitoring parameters are optimized. The decision tables for each fault source are built and the diagnosis rules rooting in rough set reduction is applied to carry through intelligent fault diagnosis. The cases studied show that rough set method in condition monitoring and fault diagnosis can lighten the work burden in feature selection and afford advantages for autonomic learning and decision during diagnosis. 展开更多
关键词 condition monitoring FAULT diagnosis ROUGH SET theory ENGINE
在线阅读 下载PDF
Replacement Strategy for Aged Transformers Based on Condition Monitoring and System Risk 被引量:1
3
作者 Dabo ZHANG Wenyuan LI Xiaofu XIONG 《电力系统自动化》 EI CSCD 北大核心 2013年第17期64-71,共8页
关键词 系统风险 替换策略 状态监测 变形金刚 老年 老化故障 风险评估 变压器
在线阅读 下载PDF
Decentralized and overall condition monitoring system for large-scale mobile and complex equipment
4
作者 Cao Jianjun Zhang Peilin +1 位作者 Ren Guoquan Fu Jianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第4期758-763,共6页
It is an urgent project to realize online and overall condition monitoring and timely fault diagnosis for large-scale mobile and complex equipment. Moreover, most of the existing large-scale complex equipment has quit... It is an urgent project to realize online and overall condition monitoring and timely fault diagnosis for large-scale mobile and complex equipment. Moreover, most of the existing large-scale complex equipment has quite insufficient accessibility of examination, although it still has quite a long service life. The decentralized and overall condition monitoring, as a new concept, is proposed from the point of view of the whole system. A set of complex equipment is divided into several parts in terms of concrete equipment. Every part is processed via one detecting unit, and the main detecting unit is connected with other units. The management work and communications with the remote monitoring center have been taken on by it. Consequently, the difficulty of realizing a condition monitoring system and the complexity of processing information is reduced greatly. Furthermore, excellent maintainability of the condition monitoring system is obtained because of the modularization design. Through an application example, the design and realization of the decentralized and overall condition monitoring system is introduced specifically. Some advanced technologies, such as, micro control unit (MCU), advanced RISC machines (ARM), and control area network (CAN), have been adopted in the system. The system's applicability for the existing large-scale mobile and complex equipment is tested. 展开更多
关键词 condition monitoring fault diagnosis micro control unit information fusion
在线阅读 下载PDF
STUDY ON REALISTIC TECHNOLOGY OF CONDITION MONITORING AND FAULT DIAGNOSTIC SYSTEM FOR SHIPPING POWER DEVICES
5
作者 温熙森 李岳 《国防科技大学学报》 EI CAS CSCD 北大核心 1995年第3期26-32,共7页
STUDYONREALISTICTECHNOLOGYOFCONDITIONMONITORINGANDFAULTDIAGNOSTICSYSTEMFORSHIPPINGPOWERDEVICESWenXisen;LiYue... STUDYONREALISTICTECHNOLOGYOFCONDITIONMONITORINGANDFAULTDIAGNOSTICSYSTEMFORSHIPPINGPOWERDEVICESWenXisen;LiYue;TangBingyang(Dep... 展开更多
关键词 状态监测 故障诊断 轮船 动力装置
在线阅读 下载PDF
Finite element model updating of existing steel bridge based on structural health monitoring 被引量:4
6
作者 何旭辉 余志武 陈政清 《Journal of Central South University of Technology》 EI 2008年第3期399-403,共5页
Based on the physical meaning of sensitivity,a new finite element(FE) model updating method was proposed. In this method,a three-dimensional FE model of the Nanjing Yangtze River Bridge(NYRB) with ANSYS program was es... Based on the physical meaning of sensitivity,a new finite element(FE) model updating method was proposed. In this method,a three-dimensional FE model of the Nanjing Yangtze River Bridge(NYRB) with ANSYS program was established and updated by modifying some design parameters. To further validate the updated FE model,the analytical stress-time histories responses of main members induced by a moving train were compared with the measured ones. The results show that the relative error of maximum stress is 2.49% and the minimum relative coefficient of analytical stress-time histories responses is 0.793. The updated model has a good agreement between the calculated data and the tested data,and provides a current baseline FE model for long-term health monitoring and condition assessment of the NYRB. At the same time,the model is validated by stress-time histories responses to be feasible and practical for railway steel bridge model updating. 展开更多
关键词 steel bridge model updating structural health monitoring condition assessment sensitivity
在线阅读 下载PDF
Method of Monitoring Wearing and Breakage States of Cutting Tools Based on Mahalanobis Distance Features 被引量:1
7
作者 JI Shi-ming, ZHANG Lin-bin, YUAN Ju-long, WAN Yue-hua, ZHANG Xian, ZHANG Li, BAO Guan-jun (Institute of Mechatronics Engineering, Zhejiang University of Technology, Hangzhou 310032, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期25-26,共2页
The Mahalanobis distance features proposed by P.C.Mahalanobis, an Indian statistician, can be used in an automatic on-line cutting tool condition monitoring process based on digital image processing. In this paper, a ... The Mahalanobis distance features proposed by P.C.Mahalanobis, an Indian statistician, can be used in an automatic on-line cutting tool condition monitoring process based on digital image processing. In this paper, a new method of obtaining Mahalanobis distance features from a tool image is proposed. The key of calculating Mahalanobis distance is appropriately dividing the object into several component sets. Firstly, a technique is proposed that can automatically divide the component groups for calculating Mahalanobis distance based on the gray level of wearing or breakage regions in a tool image. The wearing region can be divided into high gray level component group and the tool-blade into low one. Then, the relation between Mahalanobis distance features of component groups and tool conditions is investigated. The results indicate that the high brightness region on the flank surface of the turning tool will change with its abrasion change and if the tool is heavily abraded, the area of high brightness will increase apparently. The Mahalanobis distance features of high gray level component group are related with wearing state of tool and low gray level component group correlated with breakage of tool. The experimental results show that the abrasion of the tool’s flank surface affected the Mahalanobis distances of high brightness component of the tool and the pixels of high brightness component set. Compared with the changes of them, we found that the Mahalanobis distance of high brightness component of the tool was more sensitive to the abrasion of cutting tool than the area of high brightness component set of the tool. Here we found that the relative changing rate of the area of high brightness component set was not quite obvious and it was ranging from 2% to 15%, while the relative changing rate of the Mahalanobis distance in table 1 ranges from 13.9% to 47%. It is 3 times higher than the changing rate of the area. 展开更多
关键词 mahalanobis distance tool condition monitoring image processing
在线阅读 下载PDF
On-line Tool Wear Classification in Unmanned-machining Environments 被引量:1
8
作者 A D Hope G A King 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期80-81,共2页
One of the most important features of the modern ma ch ining system in an "unmanned" factory is to change tools that have been subjec ted to wear and damage. An integrated tool condition monitoring system co... One of the most important features of the modern ma ch ining system in an "unmanned" factory is to change tools that have been subjec ted to wear and damage. An integrated tool condition monitoring system composed of multi-sensors, signal processing devices and intelligent decision making pla ns is a necessary requirement for automatic manufacturing processes. An intellig ent tool wear monitoring system will be introduced in this paper. The system is equipped with power consumption, vibration, AE and cutting force sensors, signal transformation and collection apparatus and a microcomputer. Tool condition monitoring is a pattern recognition process in which the characte ristics of the tool to be monitored are compared with those of the standard mode ls. The tool wear classification process is composed of the following parts: fea ture extraction; determination of the fuzzy membership functions of the features ; calculation of the fuzzy similarity; learning and tool wear classification. Fe atures extracted from the time domain and frequency domain for the future patter n recognition are as follows. Power consumption signal: mean value; AE-RMS sign al: mean value, skew and kutorsis; Cutting force, AE and vibration signal: mean value, standard deviation and the mean power in 10 frequency ranges. These signa l features can reflect the tool wear states comprehensively. The fuzzy approachi ng degree and the fuzzy distance between corresponding features of different obj ects are combined to describe the closeness of two fuzzy sets more accurately. A unique fuzzy driven neural network based pattern recognition algorithm has bee n developed from this research. The combination of Artificial Neural Networks (A NNs) and fuzzy logic system integrates the strong learning and classification ab ility of the former and the superb flexibility of the latter to express the dist ribution characteristics of signal features with vague boundaries. This methodol ogy indirectly solves the automatic weight assignment problem of the conventiona l fuzzy pattern recognition system and let it have greater representative power, higher training speed and be more robust. The introduction of the two-dimensio nal weighted approaching degree can make the pattern recognition process more re liable. The fuzzy driven neural network can effectively fuse multi-sensor i nformation and successfully recognize the tool wear states. Armed with the advan ced pattern recognition methodology, the established intelligent tool condition monitoring system has the advantages of being suitable for different machini ng conditions, robust to noise and tolerant to faults. Cooperated with the contr ol system of the machine tool, the optimized machining processed can be achieved . 展开更多
关键词 condition monitoring feature extraction fuzzy logic and neural networks sensor fusion pattern recognition
在线阅读 下载PDF
Vibration Severity Monitoring and Evaluation of Armored Vehicle Transmission
9
作者 樊新海 王传菲 +1 位作者 安钢 王战军 《Defence Technology(防务技术)》 SCIE EI CAS 2009年第4期256-260,共5页
Vibration monitoring and vibration severity evaluation of armored vehicle transmission are realized by additional sensors. An algorithm of vibration severity in frequency domain is presented. The algorithm has powerfu... Vibration monitoring and vibration severity evaluation of armored vehicle transmission are realized by additional sensors. An algorithm of vibration severity in frequency domain is presented. The algorithm has powerful applicability for signal type and flexible selectivity for frequency range,and avoids the processing of signal conversion used calculus and filtering compared to the algorithm of vibration severity in time domain. An applied example is given in company with attentive proceedings and measures for improving evaluation effect. 展开更多
关键词 MECHANICS armored vehicle TRANSMISSION condition monitoring vibration standard vibration severity
在线阅读 下载PDF
改进抗噪1D-CNN的旋转车轮动平衡状态监测 被引量:1
10
作者 周海超 关浩东 +2 位作者 王国林 张宇 赵春来 《振动.测试与诊断》 北大核心 2025年第2期309-315,412,413,共9页
针对实车旋转车轮动平衡状态难以实时监测及预判的问题,提出了一种融合注意力机制的抗噪一维卷积神经网络(noise resistant 1D convolutional neural network,简称NRCNN)的旋转车轮动平衡健康状态监测方法。首先,构建NRCNN模型,以在实... 针对实车旋转车轮动平衡状态难以实时监测及预判的问题,提出了一种融合注意力机制的抗噪一维卷积神经网络(noise resistant 1D convolutional neural network,简称NRCNN)的旋转车轮动平衡健康状态监测方法。首先,构建NRCNN模型,以在实车车轮上添加3种不同质量平衡块的方式获得3种不同速度下对应的旋转车轮动不平衡状态下的振动信息;其次,以高斯白噪声为噪声输入,对所测旋转车轮不同动平衡状态的振动信息进行处理,获得试验样本数据,并用其进行模型训练;然后,综合运用卷积运算机制和特征变换进行t分布随机邻域嵌入(t-distributed stochastic neighbor embedding,简称t-SNE)可视化显示,实现对不同动平衡状态的分类输出。结果表明,在不同信噪比的工况下,所提出的改进NRCNN模型旋转车轮的动平衡状态监测方法相比于传统一维卷积神经网络(1D convolutional neural network,简称1D-CNN)模型,展现出更高的诊断准确性,最高可达到99.95%。 展开更多
关键词 卷积神经网络 注意力机制 车轮动平衡 状态监测 高斯白噪声
在线阅读 下载PDF
基于视觉Transformer多模型融合的风电机组异常状态监测
11
作者 向玲 高鑫 +3 位作者 姚青陶 苏浩 胡爱军 程砺锋 《太阳能学报》 北大核心 2025年第4期522-529,共8页
为实现风电机组的异常状态监测并用于其故障诊断和日常维护,提出一种新的监测方法,该方法基于视觉Transformer(ViT)模型与长短期记忆(LSTM)网络融合,能有效识别风电机组的运行状态。首先,利用箱线图法和Spearman相关性分析对原始SCADA... 为实现风电机组的异常状态监测并用于其故障诊断和日常维护,提出一种新的监测方法,该方法基于视觉Transformer(ViT)模型与长短期记忆(LSTM)网络融合,能有效识别风电机组的运行状态。首先,利用箱线图法和Spearman相关性分析对原始SCADA数据进行预处理,去除无效数据并选择输入参数。然后,构建融合LSTM的ViT预测模型,并引入统计学中KL散度作为检测指标,对目标参数预测值与真实值进行计算分析。最后采用核密度估计确定安全阈值,根据检测指标是否越过安全阈值来识别风电机组异常状态。通过将该模型应用于华北某风场进行实例分析,并与其他深度学习模型对比。结果表明:该方法相较于其他模型能更好识别出风电机组异常状态。 展开更多
关键词 风电机组 状态监测 长短期记忆网络 视觉Transformer KL散度
在线阅读 下载PDF
粮食生产大数据平台研究进展与展望 被引量:1
12
作者 杨贵军 赵春江 +13 位作者 杨小冬 杨浩 胡海棠 龙慧灵 裘正军 李娴 江冲亚 孙亮 陈雷 周清波 郝星耀 郭威 王培 高美玲 《智慧农业(中英文)》 2025年第2期1-12,共12页
[目的/意义]农业大数据爆炸式发展,加速农业生产迈入数字化、智能化新时代。作为新质生产力,大数据服务于粮食生产全过程综合智能化管理决策,面临粮食生产大数据资源治理机制不明、全链条化粮食生产决策核心算法体系缺乏且对外依存度高... [目的/意义]农业大数据爆炸式发展,加速农业生产迈入数字化、智能化新时代。作为新质生产力,大数据服务于粮食生产全过程综合智能化管理决策,面临粮食生产大数据资源治理机制不明、全链条化粮食生产决策核心算法体系缺乏且对外依存度高、粮食生产全过程全要素的大数据平台缺乏等问题。[进展]本文综合分析了国内外粮食生产大数据、农情监测与智能决策算法、大数据平台方面的相关进展和面临的挑战,面向产前规划、产中监测与决策、产后综合评价等粮食生产全程管理决策需求,构建由多源异构粮食生产大数据治理、粮食生产知识图谱、“数据获取-信息提取-知识构建-智能决策-农机作业”全链条标准化算法体系、数字孪生典型应用场景等环节组成的粮食生产大数据智能平台。[结论/展望]应重点关注宏观管理监测和微观农场全程智能化生产作业需求,聚焦粮食生产典型应用场景,充分融合大数据与人工智能、数字孪生及云边端等新技术,探索技术联通集成为本,智能化服务为魂的大数据平台研发路径,创建开放式作物与环境传感接入、核心算法成熟度分级与云原生封装、高效数据与决策服务响应等为核心特色的开放共生型粮食生产大数据平台,实现数据-算法-服务全链条智能化、决策信息与智能装备作业一体化、粮食生产大数据平台与应用体系标准化,形成保障粮食安全高效绿色生产的新质生产力。 展开更多
关键词 粮食生产 大数据平台 农情监测 智能算法 决策支持 新质生产力
在线阅读 下载PDF
5000吨超大海工油缸数字孪生系统的构建与应用
13
作者 何超然 卞永明 +3 位作者 陈力 丁张杰 袁志成 简立刚 《中国工程机械学报》 北大核心 2025年第4期628-632,638,共6页
随着工业自动化和智能制造的发展,数字孪生技术在海事工程领域的应用潜力日益凸显。超大海工油缸长期处于复杂的海事环境中,易受腐蚀、船体摇摆等因素影响,导致设备运行可靠性降低、故障率提升,甚至威胁作业的安全。针对这些挑战,提出... 随着工业自动化和智能制造的发展,数字孪生技术在海事工程领域的应用潜力日益凸显。超大海工油缸长期处于复杂的海事环境中,易受腐蚀、船体摇摆等因素影响,导致设备运行可靠性降低、故障率提升,甚至威胁作业的安全。针对这些挑战,提出了一种面向超大海工油缸的数字孪生系统,通过构建虚实结合的实时交互平台,提升油缸在海事环境下的状态监测与性能评估能力。首先设计了硬件系统,重点解决了复杂环境下数据采集的准确性和实时性问题。随后,基于物联网和大数据技术开发的软件系统实现了针对海工油缸的状态监测、腐蚀诊断和动态性能评估等功能。研究表明,该数字孪生系统有望提升油缸的安全性和可靠性,为设备的预维护、寿命延长及性能优化提供重要支撑,并为类似海事设备的数字化转型提供了经验。 展开更多
关键词 数字孪生 状态监测 性能评估
在线阅读 下载PDF
船舶推进轴系纵向振动位移高精度预测方法研究
14
作者 周建辉 罗斌 +2 位作者 孙锋 饶柱石 邹冬林 《中国舰船研究》 北大核心 2025年第5期142-149,共8页
[目的]针对轮机舱测点布置受限导致推进轴系纵向振动难以全面评估的问题,提出一种融合Kalman滤波技术与推进轴系纵向振动模型的高精度预测方法。[方法]该方法结合确定性分析与随机考量,通过最小方差无偏估计策略,有效考虑动力学模型误... [目的]针对轮机舱测点布置受限导致推进轴系纵向振动难以全面评估的问题,提出一种融合Kalman滤波技术与推进轴系纵向振动模型的高精度预测方法。[方法]该方法结合确定性分析与随机考量,通过最小方差无偏估计策略,有效考虑动力学模型误差及数据测量误差,仅需2个测点数据,即可在螺旋桨激励力未知且测量信号噪声干扰显著的复杂工况下,准确预测推进轴系任意位置纵向振动位移。[结果]在信噪比低至0dB的恶劣环境下,螺旋桨处预测位移与理论位移的均方根误差仅为8.85μm,推力轴承处为5.49μm,验证了其高精度预测能力。[结论]所提方法为舰船推进轴系纵向振动状态的实时、在线评估提供了新方案,具有重要的应用价值。 展开更多
关键词 船舶推进 轴系 状态监测 振动测量 KALMAN滤波
在线阅读 下载PDF
掘进机截割部实验台数字孪生监测系统研究
15
作者 马天兵 杨启程 +2 位作者 李长鹏 史瑞 彭猛 《煤炭工程》 北大核心 2025年第4期131-137,共7页
掘进机截割部实验台在模拟截割过程中,粉尘浓度高,会引起掘进机截割状态实时监测的可视化效果差、安全性低等问题,为此,提出了一种基于数字孪生的掘进机截割实验状态实时监测方法。首先,绘制了数字孪生掘进机截割部实验系统五维模型架构... 掘进机截割部实验台在模拟截割过程中,粉尘浓度高,会引起掘进机截割状态实时监测的可视化效果差、安全性低等问题,为此,提出了一种基于数字孪生的掘进机截割实验状态实时监测方法。首先,绘制了数字孪生掘进机截割部实验系统五维模型架构;其次,基于UE 5软件开发了掘进机截割部实验系统数字孪生体,主要包括截割部数字场景的搭建、孪生数据传输与管理、虚实数据映射等;最后通过掘进机截割实验进行数字孪生集成功能验证。实验结果表明,运用数字孪生技术实现场景漫游可有效提升掘进机截割状态可视化监测效果,为截割实验安全性提供保障。 展开更多
关键词 数字孪生 掘进机截割部 数据交互 状态监测 数据可视化
在线阅读 下载PDF
高压电缆系统状态监测中人工智能的典型应用及展望
16
作者 周凯 刘强 +3 位作者 唐昕宇 张帆 杨帆 李泽瑞 《高电压技术》 北大核心 2025年第8期4248-4262,共15页
随着高压电缆应用规模的日益扩大及逐步进入老化周期,对其智能化运维成为保障城市电网可靠性的紧迫需求。传统的高压电缆运维模式存在隐蔽缺陷识别难、多故障耦合溯源难及有效案例数据稀少等方面的瓶颈。人工智能(artificial intelligen... 随着高压电缆应用规模的日益扩大及逐步进入老化周期,对其智能化运维成为保障城市电网可靠性的紧迫需求。传统的高压电缆运维模式存在隐蔽缺陷识别难、多故障耦合溯源难及有效案例数据稀少等方面的瓶颈。人工智能(artificial intelligence,AI)技术,凭借其在处理复杂、高维、非线性数据上的优势,为电缆运维从“经验驱动”向“数据智能驱动”转型提供了契机。为此系统性阐述了人工智能技术在高压电缆系统状态监测中的典型应用现状及前景。首先阐述了高压电缆系统状态监测中主要监测物理量的特点及AI应用前景。其次,梳理了机器学习与深度学习等主流AI技术的特点,并分析其在电缆状态监测中的应用进展。随后,进一步深入剖析了AI在局部放电监测、电缆逸出气体分析(evolved gas analysis,EGA)及金属护套环流监测等三大核心领域的典型应用进展,并针对EGA领域数据稀缺的挑战,探讨了基于数据增强、迁移学习和小样本学习的模型优化策略。最后,探讨了AI在多模态数据融合及诊断评估的技术路径。通过这些研究表明,AI技术通过知识自进化机制与多模态数据融合,可能推动高压电缆系统从传统运维模式向智能化的预测性维护模式转变。 展开更多
关键词 高压电缆 状态监测 人工智能 故障诊断 逸出气体分析
在线阅读 下载PDF
基于改进通道注意力优化变分自编码器的居民空调负荷辨识
17
作者 王凌云 唐涛 +2 位作者 鲍刚 阮胜冬 张涛 《仪器仪表学报》 北大核心 2025年第5期251-263,共13页
居民空调负荷的准确辨识是挖掘其调控潜力和实现需求响应的关键。针对目前居民空调功率求解方法的精度不足和计算复杂问题,故提出一种基于变分自编码器(VAE)和改进高效通道注意力机制(ECA)的居民空调负荷非侵入式辨识神经网络模型。改进... 居民空调负荷的准确辨识是挖掘其调控潜力和实现需求响应的关键。针对目前居民空调功率求解方法的精度不足和计算复杂问题,故提出一种基于变分自编码器(VAE)和改进高效通道注意力机制(ECA)的居民空调负荷非侵入式辨识神经网络模型。改进ECA采用结合全局平均池化与全局最大池化的双池化策略,既捕获整体统计信息又突出局部显著响应。借助压缩-重构机制,在降维后利用快速动态卷积核自适应捕捉局部通道交互信息,有效聚焦关键信息,为通道赋予合理权重;将改进ECA集成在VAE解码器中,增强模型对空调负荷的特征重构能力;模型进一步引入多任务学习框架,联合优化功率分解与状态识别任务,实现任务间信息共享和互补,从而提高整体辨识精度。同时,利用输出模块和后处理状态阈值约束,有效抑制非空调负荷的干扰。最后,在真实居民用电数据集上进行实验验证。实验结果表明,相较于两个对比模型,模型在3个地区所有居民功率分解的平均绝对误差(MAE)均值分别提升59.71%和9.22%,空调状态识别F1值达84.58%。消融实验表明,改进ECA使其中两个地区功率分解MAE分别降低56.23%和12.47%,多任务学习框架进一步推动辨识精度提升3.17%和5.90%。所提出的少量侵入式测量方案以30%用户侵入式量测数据训练,在保证模型准确性的同时,减少对用户数据的依赖,具有较强的应用潜力。 展开更多
关键词 居民空调负荷 变分自编码器 非侵入式负荷监测 通道注意力 多任务学习
在线阅读 下载PDF
基于改进特征交叉算法的风电机组齿轮箱状态监测
18
作者 刘长良 田雯雯 +2 位作者 张书瑶 尹磊 刘帅 《动力工程学报》 北大核心 2025年第7期1072-1081,1090,共11页
针对风电机组监控与数据采集(SCADA)数据间存在的非线性关联问题,引入特征交叉机制并进行改进,将其应用于风电机组齿轮箱状态监测领域。首先,提出一种两阶段交叉特征选择方法,该方法综合考虑了变量间的因果性、相关性及数据分布差异,以... 针对风电机组监控与数据采集(SCADA)数据间存在的非线性关联问题,引入特征交叉机制并进行改进,将其应用于风电机组齿轮箱状态监测领域。首先,提出一种两阶段交叉特征选择方法,该方法综合考虑了变量间的因果性、相关性及数据分布差异,以筛选具有强隐藏关联且低冗余度的特征进行交叉;其次,对因子分解机进行改进,仅将交叉特征组内的基准变量与其余变量进行交叉,在生成合理交叉特征的同时显著缩短了生成时间;最后,将改进特征交叉算法用于某风电场齿轮箱状态监测任务中。结果表明:所提方法与五种模型相结合均能取得优异效果,显著提升了模型监测性能。 展开更多
关键词 非线性 特征交叉 转移熵 因子分解机 状态监测
在线阅读 下载PDF
光伏并网电站监测技术及绝缘故障分析
19
作者 金立军 潘岩 黄佳其 《太阳能学报》 北大核心 2025年第3期365-372,共8页
在分析并网点电压畸变的各种影响因素基础上,建立T型并网线路简化阻抗模型,通过仿真分析探寻光伏并网电站电压互感器绝缘损坏的机理。采用暂态对地电压(TEV)法测量开关柜局部放电、超声波法判断放电点位置,结合电能质量在线监测装置判... 在分析并网点电压畸变的各种影响因素基础上,建立T型并网线路简化阻抗模型,通过仿真分析探寻光伏并网电站电压互感器绝缘损坏的机理。采用暂态对地电压(TEV)法测量开关柜局部放电、超声波法判断放电点位置,结合电能质量在线监测装置判断出现局部放电的原因。实验数据表明:该电压互感器长期承受5次谐波越限,绝缘逐步损坏,出现气隙放电,最终导致炸裂。现场对静止无功发生器(SVG)和电压互感器二次回路消缺后,运行恢复稳定,验证了实验分析的准确性。 展开更多
关键词 光伏电力系统 局部放电 故障分析 状态检测 电路谐振 谐波
在线阅读 下载PDF
多分支时间序列预测与迁移学习相结合的齿轮箱状态监测
20
作者 赵文清 林炜超 《动力工程学报》 北大核心 2025年第8期1319-1329,共11页
为了提高利用监控和数据采集(supervisory control and data acquisition,SCADA)多变量长时间序列预测齿轮箱油温的精度,解决不同风电机组因处不同运行环境导致的数据分布不一致的问题,提出了一种基于多分支时间序列预测与迁移学习相结... 为了提高利用监控和数据采集(supervisory control and data acquisition,SCADA)多变量长时间序列预测齿轮箱油温的精度,解决不同风电机组因处不同运行环境导致的数据分布不一致的问题,提出了一种基于多分支时间序列预测与迁移学习相结合的齿轮箱状态监测方法。首先,利用极致梯度提升(extreme gradient boosting,XGBoost)算法筛选输入参数组成原始序列,对其进行分解得到季节与趋势序列。其次,提出季节、趋势序列特征提取模块获取季节及趋势特征的序列,将其与经过Informer模型处理后的特征序列进行融合后输入进多层感知机映射成最终的预测值,以构建提出的多分支时间序列预测网络(multi-branch time series prediction network,MBFN)。最后,利用迁移学习并结合一分类向量支持机(one-class support vector machine,OCSVM)模型及滑动窗口构建齿轮箱的健康指数,完成齿轮箱状态监测。实验结果表明,所提出模型的MBFN显著提高了油温预测精度,优于常规时间序列预测模型,所使用的迁移策略能以较少数据适应不同数据的分布,进而实现对齿轮箱的状态监测,并且所提出的模型可以提前18.9 d发出齿轮箱故障预警。 展开更多
关键词 风电机组 齿轮箱 状态监测 多分支网络 迁移学习
在线阅读 下载PDF
上一页 1 2 91 下一页 到第
使用帮助 返回顶部