This study aimed to investigate the effect of oil processing technologies on the sensory qualities of sesame oils and to identify drivers of liking.Using a check-all-that-apply(CATA)question and a hedonic scale,150 co...This study aimed to investigate the effect of oil processing technologies on the sensory qualities of sesame oils and to identify drivers of liking.Using a check-all-that-apply(CATA)question and a hedonic scale,150 consumers evaluated the acceptability and sensory characteristics of 5 sesame oil samples including an aqueous extracted oil(S1),a cold-pressed oil(S2),two batches of screw-pressed oils(S3 and S5)and one crude sesame oil(S4).Solid-phase microextraction-gas chromatography-olfactometry-mass spectrometry(SPME-GC-O-MS)was used to identify odour-active compounds.The results showed that roasting,extraction techniques and filtration process influenced sensory perception and the acceptability of sesame oils.Consumers liked roasted sesame oils more than the cold-pressed sesame oil and liked the aqueous extracted sesame oil the most.Sensory attributes"sweet smell","mellow","roasted","nutty","persistent","high-intense flavour"and"cooked sesame seed flavour"were drivers of liking,while"green","raw sesame seed","rancid","woody"and"fishy"were drivers of disliking."Burnt"flavour was liked by some while disliked by others.Pyrazines contributed to roasted flavour;2-acetylpyrrole,acetophenone and furfural contributed to nutty flavour;2-pentyl-furan,5-methyl-2-furancarboxaldehyde,and 2-phenyl-2-butenal contributed to sweet odour in the roasted sesame seeds.Nonanal,hexanal,1-hexanol and ocimene were responsible for the"green"flavour perceived in the cold-pressed oil.This study provides valuable information for sesame manufacturers on how to improve the sensory qualities of sesame oils through process manipulation to meet the needs of diverse consumers.展开更多
Biodegradation usually obscures or even radically alters the original characteristics of oil biomarkers.The mixing of oil from multiple sources makes each source difficult to trace.Identifying the source of biodegrade...Biodegradation usually obscures or even radically alters the original characteristics of oil biomarkers.The mixing of oil from multiple sources makes each source difficult to trace.Identifying the source of biodegraded oil from multiple sources has always been a hard nut to crack.Rising to this challenge,in this study-we carried out a comprehensive investigation of biodegradation impacts,oil-source correlation,and oil charging history to trace the source and reveal the mixing process of biodegraded oil in the Toutunhe Formation(J_(2)t)in the eastern Junggar Basin,NW China.The oil of this area was biodegraded to different extent,consequently,many commonly used biomarker parameters(e.g.Pr/Ph,Pr/n C_(17))became less powerful for oil-source correlation.To address this problem,the resistance of many biomarkers to biodegradation was analyzed,and those of high bio resistance were selected to generate a more reliable oil-source correlation.The results revealed that biodegraded oil was a mixture of oil sourced from Lucaogou Formation(P_(2)l)and Xiaoquangou Formation(T_(2-3)xq).Core sample observation,microscopic fluorescent analysis and fluid inclusion analysis were combined to analyze comprehensively oil charging history.The analysis of accumulation process exhibited that the existing oil in J_(2)t was a mixture originated from the P_(2)l and T_(2-3)xq source rocks in two separate charging stages when it underwent a complicated process of charging,biodegradation,recharging and mixing.展开更多
Coal is a solid combustible mineral,and coal-bearing strata have important hydrocarbon generation potential and contribute to more than 12%of the global hydrocarbon resources.However,the deposition and hydrocarbon evo...Coal is a solid combustible mineral,and coal-bearing strata have important hydrocarbon generation potential and contribute to more than 12%of the global hydrocarbon resources.However,the deposition and hydrocarbon evolution process of ancient coal-bearing strata is characterized by multiple geological times,leading to obvious distinctions in their hydrocarbon generation potential,geological processes,and production,which affect the evaluation and exploration of hydrocarbon resources derived from coaly source rocks worldwide.This study aimed to identify the differences on oil-generated parent macerals and the production of oil generated from different coaly source rocks and through different oil generation processes.Integrating with the analysis of previous tectonic burial history and hydrocarbon generation history,high-temperature and high-pressure thermal simulation experiments,organic geochemistry,and organic petrology were performed on the Carboniferous-Permian(C-P)coaly source rocks in the Huanghua Depression,Bohai Bay Basin.The oil-generated parent macerals of coal's secondary oil generation process(SOGP)were mainly hydrogen-rich collotelinite,collodetrinite,sporinite,and cutinite,while the oil-generated parent macerals of tertiary oil generation process(TOGP)were the remaining small amount of hydrogen-rich collotelinite,sporinite,and cutinite,as well as dispersed soluble organic matter and unexhausted residual hydrocarbons.Compared with coal,the oil-generated parent macerals of coaly shale SOGP were mostly sporinite and cutinite.And part of hydrogen-poor vitrinite,lacking hydrocarbon-rich macerals,and macerals of the TOGP,in addition to some remaining cutinite and a small amount of crude oil and bitumen from SOGP contributed to the oil yield.The results indicated that the changes in oil yield had a good junction between SOGP and TOGP,both coal and coaly shale had higher SOGP aborted oil yield than TOGP starting yield,and coaly shale TOGP peak oil yield was lower than SOGP peak oil yield.There were significant differences in saturated hydrocarbon and aromatic parameters in coal and coaly shale.Coal SOGP was characterized by a lower Ts/Tm and C31-homohopane22S/(22S+22R)and a higher Pr/n C17compared to coal TOGP,while the aromatic parameter methyl dibenzothiophene ratio(MDR)exhibited coaly shale TOGP was higher than coaly shale SOGP than coaly TOGP than coaly SOGP,and coal trimethylnaphthalene ratio(TNR)was lower than coaly shale TNR.Thus,we established oil generation processes and discriminative plates.In this way,we distinguished the differences between oil generation parent maceral,oil generation time,and oil production of coaly source rocks,and therefore,we provided important support for the evaluation,prediction,and exploration of oil resources from global ancient coaly source rocks.展开更多
Hydrogen network management is important to refineries. Various systematic management techniques have been developed to improve the efficiency of refinery hydrogen networks. However, existing methods all treat the hyd...Hydrogen network management is important to refineries. Various systematic management techniques have been developed to improve the efficiency of refinery hydrogen networks. However, existing methods all treat the hydrogen network separately. The tradeoff between hydrogen network cost and oil processing network benefit has not been explored in the hydrogen network management yet. A novel sensitivity analysis scheme is presented to take oil processing network into consideration. Oil processing unit which is sensitive to both oil processing networks and hydrogen networks is identified first. Then, sensitivity analysis of the unit around the operating point of oil processing networks and hydrogen networks is carried out. Finally, the overall optimal operating condition is obtained. An example of a real Chinese refinery demonstrates the effectiveness of the proposed analysis method.展开更多
This article summarizes the block process flow scheme for the 8.0 Mt/a refining project at Hainan Refining and Chemical Company, Ltd., highlighting a green route for processing sour heavy oils, and the enlarged scale ...This article summarizes the block process flow scheme for the 8.0 Mt/a refining project at Hainan Refining and Chemical Company, Ltd., highlighting a green route for processing sour heavy oils, and the enlarged scale of production with Chinese content. The refinery is targeted at hydrotreating of process streams, integration and intensified design of process units, clean gasoline and diesel production, centralized recovery and utilization of light ends and optimization of sulphur recovery systems.展开更多
基金supported by the China Agricultural Research System(CARS14-1-29)Henan University of Technology High-Level Talents Fund(2018BS060)。
文摘This study aimed to investigate the effect of oil processing technologies on the sensory qualities of sesame oils and to identify drivers of liking.Using a check-all-that-apply(CATA)question and a hedonic scale,150 consumers evaluated the acceptability and sensory characteristics of 5 sesame oil samples including an aqueous extracted oil(S1),a cold-pressed oil(S2),two batches of screw-pressed oils(S3 and S5)and one crude sesame oil(S4).Solid-phase microextraction-gas chromatography-olfactometry-mass spectrometry(SPME-GC-O-MS)was used to identify odour-active compounds.The results showed that roasting,extraction techniques and filtration process influenced sensory perception and the acceptability of sesame oils.Consumers liked roasted sesame oils more than the cold-pressed sesame oil and liked the aqueous extracted sesame oil the most.Sensory attributes"sweet smell","mellow","roasted","nutty","persistent","high-intense flavour"and"cooked sesame seed flavour"were drivers of liking,while"green","raw sesame seed","rancid","woody"and"fishy"were drivers of disliking."Burnt"flavour was liked by some while disliked by others.Pyrazines contributed to roasted flavour;2-acetylpyrrole,acetophenone and furfural contributed to nutty flavour;2-pentyl-furan,5-methyl-2-furancarboxaldehyde,and 2-phenyl-2-butenal contributed to sweet odour in the roasted sesame seeds.Nonanal,hexanal,1-hexanol and ocimene were responsible for the"green"flavour perceived in the cold-pressed oil.This study provides valuable information for sesame manufacturers on how to improve the sensory qualities of sesame oils through process manipulation to meet the needs of diverse consumers.
基金supported by a grant from National Science Foundation for Young Scientists of China(Grant No.41702143)Natural Science Foundation of Shandong Province of China(ZR2016DL06+3 种基金ZR2017LD005)the Fundamental Research Funds for the Central Universities(17CX02006A)the Foundation of Shandong Provincial Key Laboratory of Depositional Mineralization&Sedimentary Mineral(DMSM2017063)the major science and technology project of Xinjiang Petroleum Administration Bureau of CNPC(2017E-0401)。
文摘Biodegradation usually obscures or even radically alters the original characteristics of oil biomarkers.The mixing of oil from multiple sources makes each source difficult to trace.Identifying the source of biodegraded oil from multiple sources has always been a hard nut to crack.Rising to this challenge,in this study-we carried out a comprehensive investigation of biodegradation impacts,oil-source correlation,and oil charging history to trace the source and reveal the mixing process of biodegraded oil in the Toutunhe Formation(J_(2)t)in the eastern Junggar Basin,NW China.The oil of this area was biodegraded to different extent,consequently,many commonly used biomarker parameters(e.g.Pr/Ph,Pr/n C_(17))became less powerful for oil-source correlation.To address this problem,the resistance of many biomarkers to biodegradation was analyzed,and those of high bio resistance were selected to generate a more reliable oil-source correlation.The results revealed that biodegraded oil was a mixture of oil sourced from Lucaogou Formation(P_(2)l)and Xiaoquangou Formation(T_(2-3)xq).Core sample observation,microscopic fluorescent analysis and fluid inclusion analysis were combined to analyze comprehensively oil charging history.The analysis of accumulation process exhibited that the existing oil in J_(2)t was a mixture originated from the P_(2)l and T_(2-3)xq source rocks in two separate charging stages when it underwent a complicated process of charging,biodegradation,recharging and mixing.
基金supported by the Certificate of National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2016ZX05006007-004)the National Natural Science Foundation of China(Nos.42172145,42072130)。
文摘Coal is a solid combustible mineral,and coal-bearing strata have important hydrocarbon generation potential and contribute to more than 12%of the global hydrocarbon resources.However,the deposition and hydrocarbon evolution process of ancient coal-bearing strata is characterized by multiple geological times,leading to obvious distinctions in their hydrocarbon generation potential,geological processes,and production,which affect the evaluation and exploration of hydrocarbon resources derived from coaly source rocks worldwide.This study aimed to identify the differences on oil-generated parent macerals and the production of oil generated from different coaly source rocks and through different oil generation processes.Integrating with the analysis of previous tectonic burial history and hydrocarbon generation history,high-temperature and high-pressure thermal simulation experiments,organic geochemistry,and organic petrology were performed on the Carboniferous-Permian(C-P)coaly source rocks in the Huanghua Depression,Bohai Bay Basin.The oil-generated parent macerals of coal's secondary oil generation process(SOGP)were mainly hydrogen-rich collotelinite,collodetrinite,sporinite,and cutinite,while the oil-generated parent macerals of tertiary oil generation process(TOGP)were the remaining small amount of hydrogen-rich collotelinite,sporinite,and cutinite,as well as dispersed soluble organic matter and unexhausted residual hydrocarbons.Compared with coal,the oil-generated parent macerals of coaly shale SOGP were mostly sporinite and cutinite.And part of hydrogen-poor vitrinite,lacking hydrocarbon-rich macerals,and macerals of the TOGP,in addition to some remaining cutinite and a small amount of crude oil and bitumen from SOGP contributed to the oil yield.The results indicated that the changes in oil yield had a good junction between SOGP and TOGP,both coal and coaly shale had higher SOGP aborted oil yield than TOGP starting yield,and coaly shale TOGP peak oil yield was lower than SOGP peak oil yield.There were significant differences in saturated hydrocarbon and aromatic parameters in coal and coaly shale.Coal SOGP was characterized by a lower Ts/Tm and C31-homohopane22S/(22S+22R)and a higher Pr/n C17compared to coal TOGP,while the aromatic parameter methyl dibenzothiophene ratio(MDR)exhibited coaly shale TOGP was higher than coaly shale SOGP than coaly TOGP than coaly SOGP,and coal trimethylnaphthalene ratio(TNR)was lower than coaly shale TNR.Thus,we established oil generation processes and discriminative plates.In this way,we distinguished the differences between oil generation parent maceral,oil generation time,and oil production of coaly source rocks,and therefore,we provided important support for the evaluation,prediction,and exploration of oil resources from global ancient coaly source rocks.
基金financial supported by National Natural Science Foundation of China(No.20409205 & 60421002)National High Technology Research and Development Program of China(No.2007AA04Z191 & 2007AA040702)
文摘Hydrogen network management is important to refineries. Various systematic management techniques have been developed to improve the efficiency of refinery hydrogen networks. However, existing methods all treat the hydrogen network separately. The tradeoff between hydrogen network cost and oil processing network benefit has not been explored in the hydrogen network management yet. A novel sensitivity analysis scheme is presented to take oil processing network into consideration. Oil processing unit which is sensitive to both oil processing networks and hydrogen networks is identified first. Then, sensitivity analysis of the unit around the operating point of oil processing networks and hydrogen networks is carried out. Finally, the overall optimal operating condition is obtained. An example of a real Chinese refinery demonstrates the effectiveness of the proposed analysis method.
文摘This article summarizes the block process flow scheme for the 8.0 Mt/a refining project at Hainan Refining and Chemical Company, Ltd., highlighting a green route for processing sour heavy oils, and the enlarged scale of production with Chinese content. The refinery is targeted at hydrotreating of process streams, integration and intensified design of process units, clean gasoline and diesel production, centralized recovery and utilization of light ends and optimization of sulphur recovery systems.