期刊文献+
共找到27,772篇文章
< 1 2 250 >
每页显示 20 50 100
Concurrently Boosting Activity and Stability of Oxygen Reduction Reaction Catalysts via Judiciously Crafting Fe-Mn Dual Atoms for Fuel Cells
1
作者 Lei Zhang Yuchen Dong +6 位作者 Lubing Li Yuchuan Shi Yan Zhang Liting Wei Chung-Li Dong Zhiqun Lin Jinzhan Su 《Nano-Micro Letters》 2025年第4期275-289,共15页
The ability to unlock the interplay between the activity and stability of oxygen reduction reaction(ORR)represents an important endeavor toward creating robust ORR catalysts for efficient fuel cells.Herein,we report a... The ability to unlock the interplay between the activity and stability of oxygen reduction reaction(ORR)represents an important endeavor toward creating robust ORR catalysts for efficient fuel cells.Herein,we report an effective strategy to concurrent enhance the activity and stability of ORR catalysts via constructing atomically dispersed Fe-Mn dualmetal sites on N-doped carbon(denoted(FeMn-DA)-N-C)for both anion-exchange membrane fuel cells(AEMFC)and proton exchange membrane fuel cells(PEMFC).The(FeMn-DA)-N-C catalysts possess ample dual-metal atoms consisting of adjacent Fe-N_(4)and Mn-N_(4)sites on the carbon surface,yielded via a facile doping-adsorption-pyrolysis route.The introduction of Mn carries several advantageous attributes:increasing the number of active sites,effectively anchoring Fe due to effective electron transfer to Mn(revealed by X-ray absorption spectroscopy and density-functional theory(DFT),thus preventing the aggregation of Fe),and effectively circumventing the occurrence of Fenton reaction,thus reducing the consumption of Fe.The(FeMn-DA)-N-C catalysts showcase half-wave potentials of 0.92 and 0.82 V in 0.1 M KOH and 0.1 M HClO_(4),respectively,as well as outstanding stability.As manifested by DFT calculations,the introduction of Mn affects the electronic structure of Fe,down-shifts the d-band Fe active center,accelerates the desorption of OH groups,and creates higher limiting potentials.The AEMFC and PEMFC with(FeMn-DA)-N-C as the cathode catalyst display high power densities of 1060 and 746 mW cm^(-2),respectively,underscoring their promising potential for practical applications.Our study highlights the robustness of designing Fe-containing dual-atom ORR catalysts to promote both activity and stability for energy conversion and storage materials and devices. 展开更多
关键词 Doping-adsorption-pyrolysis Dual-atom catalysts Oxygen reduction reaction Fuel cells
在线阅读 下载PDF
In situ construction of Cu(Ⅰ)-Cu(Ⅱ) pairs for efficient electrocatalytic nitrate reduction reaction to ammonia
2
作者 Muyun Zheng Yuchi Wan +7 位作者 Leping Yang Shen Ao Wangyang Fu Zhengjun Zhang Zheng-Hong Huang Tao Ling Feiyu Kang Ruitao Lv 《Journal of Energy Chemistry》 2025年第1期106-113,共8页
Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles in... Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles incorporated on nitrogen-doped porous carbon (CuO@NC) catalyst for NO_(3)-RR.Part of Cu(Ⅱ) is reduced to Cu(Ⅰ) during the NO_(3)-RR process to construct Cu(Ⅰ)-Cu(Ⅱ) pairs,confirmed by in situ X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.Density functional theory (DFT) calculations indicated that the formation of Cu(Ⅰ) could provide a reaction path with smaller energy barrier for NO_(3)-RR,while Cu(Ⅱ) effectively suppressed the competition of hydrogen evolution reaction (HER).As a result,CuO@NC catalyst achieved a Faradaic efficiency of 84.2% at -0.49 V versus reversible hydrogen electrode (RHE),and a NH_(3)yield rate of 17.2 mg h^(-1)mg^(-1)cat.at -0.79 V vs.RHE,higher than the HaberBosch process (<3.4 g h^(-1)g^(-1)cat.).This work may open a new avenue for effective NO_(3)-RR by modulating oxidation states. 展开更多
关键词 Ammonia synthesis Cu oxidation state ELECTROCHEMISTRY Nitrate reduction In situ XPS
在线阅读 下载PDF
Mechanistic insight into the synergy between nickel single atoms and nanoparticles on N-doped carbon for electroreduction of CO_(2)
3
作者 Mingdong Sun Wenwen Guan +8 位作者 Cailing Chen Chao Wu Xiaoling Liu Biao Meng Tao Chen Yu Han Jun Wang Shibo Xi Yu Zhou 《Journal of Energy Chemistry》 2025年第1期327-336,共10页
The synergy of single atoms(SAs)and nanoparticles(NPs)has demonstrated great potential in promoting the electrocatalytic carbon dioxide reduction reaction(CO_(2)RR);however,the rationalization of the SAs/NPs proportio... The synergy of single atoms(SAs)and nanoparticles(NPs)has demonstrated great potential in promoting the electrocatalytic carbon dioxide reduction reaction(CO_(2)RR);however,the rationalization of the SAs/NPs proportion remains one challenge for the catalyst design.Herein,a Ni2+-loaded porous poly(ionic liquids)(PIL)precursor synthesized through the free radical self-polymerization of the ionic liquid monomer,1-allyl-3-vinylimidazolium chloride,was pyrolyzed to prepare the Ni,N co-doped carbon materials,in which the proportion of Ni SAs and NPs could be facilely modulated by controlling the annealing temperature.The catalyst Ni-NC-1000 with a moderate proportion of Ni SAs and NPs exhibited high efficiency in the electrocatalytic conversion of CO_(2)into CO.Operando Ni K-edge X-ray absorption near-edge structure(XANES)spectra and theoretical calculations were conducted to gain insight into the synergy of Ni SAs and NPs.The charge transfer from Ni NPs to the surrounding carbon layer and then to the Ni SAs resulted in the electron-enriched Ni SAs active sites.In the electroreduction of CO_(2),the coexistence of Ni SAs and NPs strengthened the CO_(2)activation and the affinity towards the key intermediate of*COOH,lowering the free energy for the potential-determining*CO_(2)→*COOH step,and therefore promoted the catalysis efficiency. 展开更多
关键词 Single atom catalyst Synergy effect cO2 reduction Carbon catalyst ELECTROCATALYSIS
在线阅读 下载PDF
Salt reduction in cured meat products:a review on strategies and mechanisms
4
作者 Qi Chen Jinxuan Cao +3 位作者 Wenhai She Weidong Bai Xiaofang Zeng Hao Dong 《Food Science and Human Wellness》 2025年第3期864-879,共16页
Sodium chloride is one of the most widely used additives in meat curing.However,cured meat products contribute to a portion of the total sodium dietary intake.Consumers and researchers'concern about excessive sodi... Sodium chloride is one of the most widely used additives in meat curing.However,cured meat products contribute to a portion of the total sodium dietary intake.Consumers and researchers'concern about excessive sodium intake has prompted the food industry to consider ways to reduce salt content of cured meat products.The aim of this review is to provide a broad but comprehensive understanding of salt reduction strategies for cured meat products.The implications and limitations of each approach were discussed.Green technologies treatments,such as ultrasonic technology,high-pressure processing,seem to be potential to ensure microbiological safety in low-sodium cured meat products.However,these novel technologies can cause protein and fat oxidization in meat products.A combination of multiple treatments could give the desired effect.In addition,different parameter conditions need to be set according to the specific meat to achieve better salt reduction effect. 展开更多
关键词 Salt reduction Cured meat products Ultrasonic technology Salt substitutes High-pressure processing
在线阅读 下载PDF
Triazine-COF@Silicon nanowire mimicking plant leaf to enhance photoelectrocatalytic CO_(2)reduction to C_(2+) chemicals
5
作者 Wenrui Wan Fanhua Meng +8 位作者 Si Chen Jianhua Wang Chunyan Liu Yan Wei Chenpu He Li Fan Qiaolan Zhang Weichun Ye Huanwang Jing 《Green Energy & Environment》 2025年第2期422-432,共11页
Converting CO_(2)and water into valuable chemicals like plant do is considered a promising approach to address both environmental and energy issues.Taking inspiration from the structures of natural leaves,we designed ... Converting CO_(2)and water into valuable chemicals like plant do is considered a promising approach to address both environmental and energy issues.Taking inspiration from the structures of natural leaves,we designed and synthesized a novel copper-coordinated covalent triazine framework(CuCTF)supported by silicon nanowire arrays on wafer chip.This marks the first-ever application of such a hybrid material in the photoelectrocatalytic reduction of CO_(2)under mild conditions.The Si@CuCTF6 heterojunction has exhibited exceptional selectivity of 95.6%towards multicarbon products(C_(2+))and apparent quantum efficiency(AQE)of 0.89%for carbon-based products.The active sites of the catalysts are derived from the nitrogen atoms of unique triazine ring structure in the ordered porous framework and the abundant Cu-N coordination sites with bipyridine units.Furthermore,through DFT calculations and operando FTIR spectra analysis,we proposed a comprehensive mechanism for the photoelectrocatalytic CO_(2)reduction,confirming the existence of key intermediate species such as*CO_(2)-,*=C=O,*CHO and*CO-CHO etc.This work not only provides a new way to mimic photosynthesis of plant leaves but also gives a new opportunity to enter this research field in the future. 展开更多
关键词 Silicon PHOTOELECTROCATALYSIS CO_(2)reduction Covalent triazine framework Sustainable chemistry
在线阅读 下载PDF
Electrocatalytic nitrite reduction to ammonia on isolated bismuth alloyed ruthenium
6
作者 Shiyao Shang Fuzhou Wang +2 位作者 Zeyi Sun Chaofan Qiang Ke Chu 《Journal of Energy Chemistry》 2025年第1期369-376,共8页
Electrochemical reduction of NO_(2)-to NH_(3)(NO_(2)-RR) is recognized as an appealing approach for achieving renewable NH_(3)synthesis and waste NO_(2)-removal.Herein,we report isolated Bi alloyed Ru (Bi1Ru) as an ef... Electrochemical reduction of NO_(2)-to NH_(3)(NO_(2)-RR) is recognized as an appealing approach for achieving renewable NH_(3)synthesis and waste NO_(2)-removal.Herein,we report isolated Bi alloyed Ru (Bi1Ru) as an efficient NO_(2)-RR catalyst.Theoretical calculations and in situ electrochemical measurements reveal the creation of Bi1-Ru dual sites which can remarkably promote NO_(2)-activation and suppress proton adsorption,while accelerating the NO_(2)-RR protonation energetics to render a high NO_(2)--to-NH_(3)conversion efficiency.Remarkably,Bi1Ru assembled in a flow cell delivers an NH_(3)yield rate of 1901.4μmol h^(-1)cm^(-2)and an NH_(3)-Faradaic efficiency of 94.3%at an industrial-level current density of 324.3 mA cm^(-2).This study offers new perspectives for designing and constructing p-block single-atom alloys as robust and high-current-density NO_(2)-RR catalysts toward the ammonia electrosynthesis. 展开更多
关键词 Electrocatalytic reduction of NO_(2)-to NH_(3) Theoretical computations In situel ectrochemical measurements p-Block single-atom alloys
在线阅读 下载PDF
Strong synergy between physical and chemical properties:Insight into optimization of atomically dispersed oxygen reduction catalysts 被引量:8
7
作者 Yifan Zhang Linsheng Liu +4 位作者 Yuxuan Li Xueqin Mu Shichun Mu Suli Liu Zhihui Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期36-49,共14页
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz... Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered. 展开更多
关键词 Atomically dispersed catalysts Coordination environment Electronic orbitals Inter-site distance effect Oxygen reduction reaction
在线阅读 下载PDF
Cu-Based Materials for Enhanced C_(2+) Product Selectivity in Photo-/Electro-Catalytic CO_(2) Reduction: Challenges and Prospects 被引量:2
8
作者 Baker Rhimi Min Zhou +2 位作者 Zaoxue Yan Xiaoyan Cai Zhifeng Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期25-66,共42页
Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for ca... Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO_(2), Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C_(2+) compounds through C–C coupling process. Herein, the basic principles of photocatalytic CO_(2) reduction reactions(PCO_(2)RR) and electrocatalytic CO_(2) reduction reaction(ECO_(2)RR) and the pathways for the generation C_(2+) products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO_(2)RR and ECO_(2)RR is emphasized. Through a review of recent studies on PCO_(2)RR and ECO_(2)RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C_(2+) products. Finally, the opportunities and challenges associated with Cu-based materials in the CO_(2) catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO_(2) reduction processes in the future. 展开更多
关键词 Photocatalytic CO_(2)reduction Cu-based materials Electrocatalytic CO_(2)reduction
在线阅读 下载PDF
Research on a Monte Carlo global variance reduction method based on an automatic importance sampling method 被引量:2
9
作者 Yi-Sheng Hao Zhen Wu +3 位作者 Shen-Shen Gao Rui Qiu Hui Zhang Jun-Li Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期200-215,共16页
Global variance reduction is a bottleneck in Monte Carlo shielding calculations.The global variance reduction problem requires that the statistical error of the entire space is uniform.This study proposed a grid-AIS m... Global variance reduction is a bottleneck in Monte Carlo shielding calculations.The global variance reduction problem requires that the statistical error of the entire space is uniform.This study proposed a grid-AIS method for the global variance reduction problem based on the AIS method,which was implemented in the Monte Carlo program MCShield.The proposed method was validated using the VENUS-Ⅲ international benchmark problem and a self-shielding calculation example.The results from the VENUS-Ⅲ benchmark problem showed that the grid-AIS method achieved a significant reduction in the variance of the statistical errors of the MESH grids,decreasing from 1.08×10^(-2) to 3.84×10^(-3),representing a 64.00% reduction.This demonstrates that the grid-AIS method is effective in addressing global issues.The results of the selfshielding calculation demonstrate that the grid-AIS method produced accurate computational results.Moreover,the grid-AIS method exhibited a computational efficiency approximately one order of magnitude higher than that of the AIS method and approximately two orders of magnitude higher than that of the conventional Monte Carlo method. 展开更多
关键词 Monte Carlo Global variance reduction Reactor shielding Automatic importance sampling
在线阅读 下载PDF
Understanding Bridging Sites and Accelerating Quantum Efficiency for Photocatalytic CO_(2) Reduction 被引量:2
10
作者 Kangwang Wang Zhuofeng Hu +8 位作者 Peifeng Yu Alina M.Balu Kuan Li Longfu Li Lingyong Zeng Chao Zhang Rafael Luque Kai Yan Huixia Luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期68-84,共17页
We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in... We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR. 展开更多
关键词 Quantum efficiency Electronic structure Steric interaction Bridging sites CO_(2)reduction
在线阅读 下载PDF
Oxygen‑Coordinated Single Mn Sites for Efficient Electrocatalytic Nitrate Reduction to Ammonia 被引量:2
11
作者 Shengbo Zhang Yuankang Zha +8 位作者 Yixing Ye Ke Li Yue Lin Lirong Zheng Guozhong Wang Yunxia Zhang Huajie Yin Tongfei Shi Haimin Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期147-159,共13页
Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites... Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites. 展开更多
关键词 Atomically dispersed Oxygen coordination Nitrate reduction reaction In situ spectroscopic studies Hydrogen evolution reaction
在线阅读 下载PDF
The photo-decomposition and self-restructuring dynamic equilibrium mechanism of Cu_(2)(OH)_(2)CO_(3)for stable photocatalytic CO_(2)reduction 被引量:1
12
作者 Yaqing Zhi Haoning Mao +5 位作者 Guangxing Yang Qiao Zhang Zhiting Liu Yonghai Cao Siyuan Yang Feng Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期104-112,共9页
Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)... Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)R)systems.Herein,monoclinic Cu_(2)(OH)_(2)CO_(3)is firstly proven to be a new class of photocatalyst,which has excellent catalytic stability and selectivity for PCO_(2)R in the absence of any sacrificial agent and cocatalysts.Based on a Cu_(2)(OH)_(2)^(13)CO_(3)photocatalyst and 13CO_(2)two-sided^(13)C isotopic tracer strategy,and combined with in situ diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)analysis and density functional theory(DFT)calculations,two main CO_(2)transformation routes,and the photo-decomposition and self-restructuring dynamic equilibrium mechanism of Cu_(2)(OH)_(2)CO_(3)are definitely revealed.The PCO_(2)R activity of Cu_(2)(OH)_(2)CO_(3)is comparable to some of state-of-the-art novel photocatalysts.Significantly,the PCO_(2)R properties can be further greatly enhanced by simply combining Cu_(2)(OH)_(2)CO_(3)with typical TiO_(2)to construct composites photocatalyst.The highest CO_(2)and CH_(4)production rates by 7.5 wt%Cu_(2)(OH)_(2)CO_(3)-TiO_(2)reach 16.4μmol g^(-1)h^(-1)and 116.0μmol g^(-1)h^(-1),respectively,which are even higher than that of some of PCO_(2)R systems containing sacrificial agents or precious metals modified photocatalysts.This work provides a better understanding for the PCO_(2)R mechanism at the atomic levels,and also indicates that basic carbonate photocatalysts have broad application potential in the future. 展开更多
关键词 CO_(2)photocatalytic reduction PHOTOCATALYSIS Basic copper carbonate SELF-RECONSTRUCTION PHOTOCATALYST
在线阅读 下载PDF
Exploring the impact of Nafion modifier on electrocatalytic CO_(2) reduction over Cu catalyst 被引量:2
13
作者 Yingshi Su Yonghui Cheng +6 位作者 Zhen Li Yanjia Cui Caili Yang Ziyi Zhong Yibing Song Gongwei Wang Lin Zhuang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期543-551,I0012,共10页
Nafion as a universal polymer ionomer was widely applied for nanocatalysts electrode preparation.However,the effect of Nafion on electrocatalytic performance was often overlooked,especially for CO_(2)electrolysis.Here... Nafion as a universal polymer ionomer was widely applied for nanocatalysts electrode preparation.However,the effect of Nafion on electrocatalytic performance was often overlooked,especially for CO_(2)electrolysis.Herein,the key roles of Nafion for CO_(2)RR were systematically studied on Cu nanoparticles(NPs)electrocatalyst.We found that Nafion modifier not only inhibit hydrogen evolution reaction(HER)by decreasing the accessibility of H_(2)O from electrolyte to Cu NPs,and increase the CO_(2)concentration at electrocatalyst interface for enhancing the CO_(2)mass transfer process,but also activate CO_(2)molecule by Lewis acid-base interaction between Nafion and CO_(2)to accelerate the formation of^(*)CO,which favor of C–C coupling for boosting C_(2)product generation.Owing to these features,the HER selectivity was suppressed from 40.6%to 16.8%on optimal Cu@Nafion electrode at-1.2 V versus reversible hydrogen electrode(RHE),and as high as 73.5%faradaic efficiencies(FEs)of C_(2)products were achieved at the same applied potential,which was 2.6 times higher than that on bare Cu electrode(~28.3%).In addition,Nafion also contributed to the long-term stability by hinder Cu NPs morphology reconstruction.Thus,this work provides insights into the impact of Nafion on electrocatalytic CO_(2)RR performance. 展开更多
关键词 Nafion modifier CO_(2)reduction Cu nanoparticles In situ ATR-SEIRAS C_(2)product
在线阅读 下载PDF
Porous metal oxides in the role of electrochemical CO_(2) reduction reaction 被引量:1
14
作者 Ziqi Zhang Jinyun Xu +9 位作者 Yu Zhang Liping Zhao Ming Li Guoqiang Zhong Di Zhao Minjing Li Xudong Hu Wenju Zhu Chunming Zheng Xiaohong Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期373-398,I0009,共27页
The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous me... The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction. 展开更多
关键词 CO_(2)reduction Carbon dioxide TRANSFORMATION Porous metal oxides ELECTROCATALYSIS
在线阅读 下载PDF
Surface engineering of ZnO electrocatalyst by N doping towards electrochemical CO_(2) reduction 被引量:1
15
作者 Rohini Subhash Kanase Getasew Mulualem Zewdie +7 位作者 Maheswari Arunachalam Jyoti Badiger Suzan Abdelfattah Sayed Kwang-Soon Ahn Jun-Seok Ha Uk Sim Hyeyoung Shin Soon Hyung Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期71-81,I0002,共12页
The discovery of efficient,selective,and stable electrocatalysts can be a key point to produce the largescale chemical fuels via electrochemical CO_(2) reduction(ECR).In this study,an earth-abundant and nontoxic ZnO-b... The discovery of efficient,selective,and stable electrocatalysts can be a key point to produce the largescale chemical fuels via electrochemical CO_(2) reduction(ECR).In this study,an earth-abundant and nontoxic ZnO-based electrocatalyst was developed for use in gas-diffusion electrodes(GDE),and the effect of nitrogen(N)doping on the ECR activity of ZnO electrocatalysts was investigated.Initially,a ZnO nanosheet was prepared via the hydrothermal method,and nitridation was performed at different times to control the N-doping content.With an increase in the N-doping content,the morphological properties of the nanosheet changed significantly,namely,the 2D nanosheets transformed into irregularly shaped nanoparticles.Furthermore,the ECR performance of Zn O electrocatalysts with different N-doping content was assessed in 1.0 M KHCO_(3) electrolyte using a gas-diffusion electrode-based ECR cell.While the ECR activity increased after a small amount of N doping,it decreased for higher N doping content.Among them,the N:ZnO-1 h electrocatalysts showed the best CO selectivity,with a faradaic efficiency(FE_(CO))of 92.7%at-0.73 V vs.reversible hydrogen electrode(RHE),which was greater than that of an undoped Zn O electrocatalyst(FE_(CO)of 63.4%at-0.78 V_(RHE)).Also,the N:ZnO-1 h electrocatalyst exhibited outstanding durability for 16 h,with a partial current density of-92.1 mA cm^(-2).This improvement of N:ZnO-1 h electrocatalyst can be explained by density functional theory calculations,demonstrating that this improvement of N:ZnO-1 h electrocatalyst comes from(ⅰ)the optimized active sites lowering the free energy barrier for the rate-determining step(RDS),and(ⅱ)the modification of electronic structure enhancing the electron transfer rate by N doping. 展开更多
关键词 ZNO N-doped ZnO Gas-diffusion electrode CO Selectivity Electrochemical CO_(2)reduction
在线阅读 下载PDF
Sulfur doped iron-nitrogen-hard carbon nanosheets as efficient and robust noble metal-free catalysts for oxygen reduction reaction in PEMFC 被引量:1
16
作者 Bin Liu Jiawang Li +6 位作者 Bowen Yan Qi Wei Xingyu Wen Huarui Xie Huan He Pei Kang Shen Zhi Qun Tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期422-433,I0010,共13页
Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membr... Transition metal-nitrogen-carbon(M-N-C)as a promising substitute for the conventional noble metalbased catalyst still suffers from low activity and durability for oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).To tackle the issue,herein,a new type of sulfur-doped ironnitrogen-hard carbon(S-Fe-N-HC)nanosheets with high activity and durability in acid media were developed by using a newly synthesized precursor of amide-based polymer with Fe ions based on copolymerizing two monomers of 2,5-thiophene dicarboxylic acid(TDA)as S source and 1,8-diaminonaphthalene(DAN)as N source via an amination reaction.The as-synthesized S-Fe-N-HC features highly dispersed atomic Fe Nxmoieties embedded into rich thiophene-S doped hard carbon nanosheets filled with highly twisted graphite-like microcrystals,which is distinguished from the majority of M-N-C with soft or graphitic carbon structures.These unique characteristics endow S-Fe-N-HC with high ORR activity and outstanding durability in 0.5 M H_(2)SO_(4).Its initial half-wave potential is 0.80 V and the corresponding loss is only 21 m V after 30,000 cycles.Meanwhile,its practical PEMFC performance is a maximum power output of 628.0 mW cm^(-2)and a slight power density loss is 83.0 m W cm^(-2)after 200-cycle practical operation.Additionally,theoretical calculation shows that the activity of Fe Nxmoieties on ORR can be further enhanced by sulfur doping at meta-site near FeN_(4)C.These results evidently demonstrate that the dual effect of hard carbon substrate and S doping derived from the precursor platform of amid-polymers can effectively enhance the activity and durability of Fe-N-C catalysts,providing a new guidance for developing advanced M-N-C catalysts for ORR. 展开更多
关键词 Transition metal-nitrogen-carbon Oxygen reduction reaction Hard carbon Amide based polymer reaction Proton exchange membrane cells
在线阅读 下载PDF
Regulating^(*)COOH intermediate via amino alkylation engineering for exceptionally effective photocatalytic CO_(2) reduction 被引量:1
17
作者 Chengcheng Chen Qiaoyu Zhang +3 位作者 Fangting Liu Zhengguo Zhang Qiong Liu Xiaoming Fang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期282-291,共10页
Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate ... Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate and retarded desorption of target products.Engineering the interface microenvironment of catalysts has been proposed as a strategy to exert a significant influence on reaction outcomes,yet it remains a significant challenge.In this study,amino alkylation was successfully integrated into the melem unit of polymeric carbon nitrides(PCN),which could efficiently drive the photocatalytic CO_(2) reduction.Experimental characterization and theoretical calculations revealed that the introduction of amino alkylation lowers the energy barrier for CO_(2) reduction into^(*)COOH intermediate,transforming the adsorption of^(*)COOH intermediate from the endothermic to an exothermic process.Notably,the as-prepared materials demonstrated outstanding performance in photocatalytic CO_(2) reduction,yielding CO_(2)at a rate of 152.8μmol h^(-1) with a high selectivity of 95.4%and a quantum efficiency of 6.6%. 展开更多
关键词 Polymeric carbonnitride Regulate intermediate Photocatalytic CO_(2)reduction Amino alkylation ^(*)COOH adsorption
在线阅读 下载PDF
Ultrafine ordered L1_(2)-Pt-Co-Mn ternary intermetallic nanoparticles as high-performance oxygen-reduction electrocatalysts for practical fuel cells 被引量:1
18
作者 Enping Wang Liuxuan Luo +12 位作者 Yong Feng Aiming Wu Huiyuan Li Xiashuang Luo Yangge Guo Zehao Tan Fengjuan Zhu Xiaohui Yan Qi Kang Zechao Zhuang Daihui Yang Shuiyun Shen Junliang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期157-165,I0005,共10页
The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction... The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts. 展开更多
关键词 Platinum Cobalt Manganese Oxygen reduction reaction Ordered intermetallic L1_(2)atomic structure Proton-exchange membrane fuel cell
在线阅读 下载PDF
Comprehensive understanding of the thriving electrocatalytic nitrate/nitrite reduction to ammonia under ambient conditions
19
作者 Xinying Zhao Yuzhuo Jiang +5 位作者 Mengfan Wang Yunfei Huan Qiyang Cheng Yanzheng He Tao Qian Chenglin Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期459-483,共25页
Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the... Ammonia(NH_(3))is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium.At present,NH_(3)synthesis is highly dependent on the conventional Haber–Bosch process that operates under harsh conditions,which consumes large quantities of fossil fuels and releases a large amount of carbon dioxide.As an alternative,electrosynthesis is a prospective method for producing NH_(3)under normal temperature and pressure conditions.Although electrocatalytic nitrogen reduction to ammonia has attracted considerable attentions,the low solubility of N_(2)and high N≡N cracking energy render the achievements of high NH_(3) yield rate and Faradaic efficiency difficult.Nitrate and nitrite(NO_(x)^(-))are common N-containing pollutants.Due to their high solubilities and low dissociation energy of N=O,NO_(x)^(-)−are ideal raw materials for NH_(3) production.Therefore,electrocatalytic NO_(x)^(-)−reduction to NH_(3)(eNO_(x)RR)is a prospective strategy to simultaneously realise environmental protection and NH_(3) synthesis.This review offers a comprehensive understanding of the thriving eNO_(x)RR under ambient conditions.At first,the popular theory and mechanism of eNO_(x)RR and a summary of the measurement system and evaluation criteria are introduced.Thereafter,various strategies for developing NO_(x)−reduction catalysts are systematically presented and discussed.Finally,the challenges and possible prospects of electrocatalytic NO_(x)^(-1) reduction are outlined to facilitate energy-saving and environmentally friendly large-scale synthesis of NH_(3) in the future. 展开更多
关键词 Electrocatalytic nitrate reduction Electrocatalytic nitrite reduction Ammonia synthesis Pollutant removal ELECTROSYNTHESIS
在线阅读 下载PDF
Promoting electroreduction of nitrite to ammonia over electron-deficient Pd modulated by rectifying Schottky contacts
20
作者 Shaobo Zhang Yabo Guo +4 位作者 Lu-Hua Zhang Zhihao Feng Bo Zhang Yaheng Wang Fengshou Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期524-530,共7页
Electrochemical nitrite reduction reaction(NO_(2)^(-)RR) is a potential sustainable route for regulating the nitrogen cycle and ambient ammonia(NH_(3)) synthesis.However,it remains a challenge to precisely regulate th... Electrochemical nitrite reduction reaction(NO_(2)^(-)RR) is a potential sustainable route for regulating the nitrogen cycle and ambient ammonia(NH_(3)) synthesis.However,it remains a challenge to precisely regulate the reaction pathways and inhibit competing reactions(e.g.hydrogenolysis) for efficient and selective NH_(3) production in an aqueous solution environment.Here,we utilize the Schottky barrier-induced surface electric field to construct high-density electron-deficient Pd nanoparticles by modulating the N content in the carbon carrier to promote the enrichment and immobilization of NO_(2)^(-)on the electrode surface,which ensures the ultimate selectivity for NH_(3).With these properties,Pd@N_(0.14)C with the highest N content achieved excellent catalytic performance for the reduction of NO_(2)^(-)to NH_(3) with the 100% Faraday efficiency at-0.5 and-0.6 V vs,reversible hydrogen electrode(RHE) for NH_(3) production,which was significantly better than Pd/C and Pd@N_(x)C samples with lower N content.This study opens new avenues for rational construction of efficient electrocatalysts for nitrite removal and NH_(3) electrosynthesis. 展开更多
关键词 ELECTROCATALYTIC Nitrite reduction reaction Electronic structure AMMONIA
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部