Define the total number of distinct prime factors of an odd perfect number n asω(n). We prove that if n is an odd perfect number which is relatively prime to 3 and 5 and7, then ω(n) ≥ 107. And using this result, we...Define the total number of distinct prime factors of an odd perfect number n asω(n). We prove that if n is an odd perfect number which is relatively prime to 3 and 5 and7, then ω(n) ≥ 107. And using this result, we give a conclusion that the third largest prime factor of such an odd perfect number exceeds 1283.展开更多
Zimian问题实质上是叙拉古算子方程 xi = S xi(xi >1)的解的存在性问题,Erd?s给出长度 m i =1 i = 1= 8的一组解.本文不仅给出了叙拉古算子方程有解的一个必要条件,指出了方程不存在长度 m = 1的解,还给出了方程在长度 m = 18, m...Zimian问题实质上是叙拉古算子方程 xi = S xi(xi >1)的解的存在性问题,Erd?s给出长度 m i =1 i = 1= 8的一组解.本文不仅给出了叙拉古算子方程有解的一个必要条件,指出了方程不存在长度 m = 1的解,还给出了方程在长度 m = 18, m = 13, = 10, = 8 和 m = 5 的若干组解.展开更多
基金Foundation item: Supported by the Science Foundation of Kashgar Teacher's College(112390)
文摘Define the total number of distinct prime factors of an odd perfect number n asω(n). We prove that if n is an odd perfect number which is relatively prime to 3 and 5 and7, then ω(n) ≥ 107. And using this result, we give a conclusion that the third largest prime factor of such an odd perfect number exceeds 1283.
文摘Zimian问题实质上是叙拉古算子方程 xi = S xi(xi >1)的解的存在性问题,Erd?s给出长度 m i =1 i = 1= 8的一组解.本文不仅给出了叙拉古算子方程有解的一个必要条件,指出了方程不存在长度 m = 1的解,还给出了方程在长度 m = 18, m = 13, = 10, = 8 和 m = 5 的若干组解.